基于Sentinel-1和Sentinel-2卫星多时相影像的土地覆盖分类改进

Limei Wang, Guowang Jin, X. Xiong
{"title":"基于Sentinel-1和Sentinel-2卫星多时相影像的土地覆盖分类改进","authors":"Limei Wang, Guowang Jin, X. Xiong","doi":"10.1145/3548636.3548639","DOIUrl":null,"url":null,"abstract":"For improving the performance of multitemporal Sentinel-1 (S1) SAR and Sentinel-2 (S2) optical imagery for land cover classification, a framework based on Rotating Kernel Transformation (RKT) denoising algorithm and the stratified sampling method based on the Crop Data Layer (CDL) is proposed. Random Forest classifications based on different denoising algorithms and sampling methods are carried out to compare their accuracy and applicability for land cover classification. The results show that the RKT algorithm and the stratified sampling method can significantly improve the classification accuracy. The classification accuracy by S1 data alone without denoising (overall accuracy: 0.873, Kappa: 0.796) is significantly lower than that of S2 (overall accuracy: 0.979, Kappa: 0.970) resulting from effects of serious salt-and-pepper noise. After RKT filtering, the speckle noise of the S1 classification result is significantly reduced and the accuracy is significantly improved (overall accuracy: 0.944, Kappa: 0.912). RKT filter outperforms the Lee and Median filters in improving the classification accuracy of SAR imagery. Feature-level fusion of S1 and S2 achieves the highest classification accuracy (overall accuracy: 0.983, Kappa: 0.972) which is significantly higher than that of S1 and slightly higher than that of S2 data alone. It proves that the fusion of the optical and SAR data can weaken the speckle noises on classification maps and improve the classification accuracy. The stratified sampling method applied in this study significantly improves the classification accuracy of each experimental group, with the overall accuracy increasing by about 10% and the Kappa coefficient increasing by more than 15% on average.","PeriodicalId":384376,"journal":{"name":"Proceedings of the 4th International Conference on Information Technology and Computer Communications","volume":"33 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement in Land Cover Classification Using Multitemporal Sentinel-1 and Sentinel-2 Satellite Imagery\",\"authors\":\"Limei Wang, Guowang Jin, X. Xiong\",\"doi\":\"10.1145/3548636.3548639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For improving the performance of multitemporal Sentinel-1 (S1) SAR and Sentinel-2 (S2) optical imagery for land cover classification, a framework based on Rotating Kernel Transformation (RKT) denoising algorithm and the stratified sampling method based on the Crop Data Layer (CDL) is proposed. Random Forest classifications based on different denoising algorithms and sampling methods are carried out to compare their accuracy and applicability for land cover classification. The results show that the RKT algorithm and the stratified sampling method can significantly improve the classification accuracy. The classification accuracy by S1 data alone without denoising (overall accuracy: 0.873, Kappa: 0.796) is significantly lower than that of S2 (overall accuracy: 0.979, Kappa: 0.970) resulting from effects of serious salt-and-pepper noise. After RKT filtering, the speckle noise of the S1 classification result is significantly reduced and the accuracy is significantly improved (overall accuracy: 0.944, Kappa: 0.912). RKT filter outperforms the Lee and Median filters in improving the classification accuracy of SAR imagery. Feature-level fusion of S1 and S2 achieves the highest classification accuracy (overall accuracy: 0.983, Kappa: 0.972) which is significantly higher than that of S1 and slightly higher than that of S2 data alone. It proves that the fusion of the optical and SAR data can weaken the speckle noises on classification maps and improve the classification accuracy. The stratified sampling method applied in this study significantly improves the classification accuracy of each experimental group, with the overall accuracy increasing by about 10% and the Kappa coefficient increasing by more than 15% on average.\",\"PeriodicalId\":384376,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Information Technology and Computer Communications\",\"volume\":\"33 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Information Technology and Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3548636.3548639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Information Technology and Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548636.3548639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高Sentinel-1 (S1) SAR和Sentinel-2 (S2)光学影像在土地覆盖分类中的性能,提出了一种基于旋转核变换(RKT)去噪算法和基于作物数据层(CDL)分层采样方法的框架。基于不同的去噪算法和采样方法进行随机森林分类,比较其在土地覆盖分类中的准确性和适用性。结果表明,RKT算法和分层抽样方法可以显著提高分类精度。由于严重的椒盐噪声影响,未去噪的S1数据的分类精度(总体精度:0.873,Kappa: 0.796)显著低于S2数据的分类精度(总体精度:0.979,Kappa: 0.970)。经过RKT滤波后,S1分类结果的散斑噪声显著降低,精度显著提高(总体精度:0.944,Kappa: 0.912)。RKT滤波器在提高SAR图像分类精度方面优于Lee和Median滤波器。特征级融合S1和S2的分类准确率最高,总体准确率为0.983,Kappa为0.972,显著高于S1,略高于单独使用S2数据的分类准确率。实验证明,光学数据与SAR数据的融合可以有效地减弱分类图上的散斑噪声,提高分类精度。本研究采用的分层抽样方法显著提高了各实验组的分类精度,总体精度提高了10%左右,Kappa系数平均提高了15%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement in Land Cover Classification Using Multitemporal Sentinel-1 and Sentinel-2 Satellite Imagery
For improving the performance of multitemporal Sentinel-1 (S1) SAR and Sentinel-2 (S2) optical imagery for land cover classification, a framework based on Rotating Kernel Transformation (RKT) denoising algorithm and the stratified sampling method based on the Crop Data Layer (CDL) is proposed. Random Forest classifications based on different denoising algorithms and sampling methods are carried out to compare their accuracy and applicability for land cover classification. The results show that the RKT algorithm and the stratified sampling method can significantly improve the classification accuracy. The classification accuracy by S1 data alone without denoising (overall accuracy: 0.873, Kappa: 0.796) is significantly lower than that of S2 (overall accuracy: 0.979, Kappa: 0.970) resulting from effects of serious salt-and-pepper noise. After RKT filtering, the speckle noise of the S1 classification result is significantly reduced and the accuracy is significantly improved (overall accuracy: 0.944, Kappa: 0.912). RKT filter outperforms the Lee and Median filters in improving the classification accuracy of SAR imagery. Feature-level fusion of S1 and S2 achieves the highest classification accuracy (overall accuracy: 0.983, Kappa: 0.972) which is significantly higher than that of S1 and slightly higher than that of S2 data alone. It proves that the fusion of the optical and SAR data can weaken the speckle noises on classification maps and improve the classification accuracy. The stratified sampling method applied in this study significantly improves the classification accuracy of each experimental group, with the overall accuracy increasing by about 10% and the Kappa coefficient increasing by more than 15% on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信