基于神经学习的机械手抓取力控制

S Fatikow, K Sundermann
{"title":"基于神经学习的机械手抓取力控制","authors":"S Fatikow,&nbsp;K Sundermann","doi":"10.1016/0066-4138(94)90051-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new control system for the intelligent force control of multifingered robot grips which combines both fuzzy-based adaptation level and a neural-based one with a conventional PID-controller. The most attention is given to the neural-based force adaptation level implemented by three-layered back-propagation neural networks. A computer based simulation system for the peg-in-hole insertion task is developed to analyze the capabilities of the neural controllers. Their behaviour is discussed by comparing them to conventional and fuzzy-based force controllers performing the same task.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"19 ","pages":"Pages 111-116"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90051-5","citationCount":"6","resultStr":"{\"title\":\"Neural-based learning in grasp force control of a robot hand\",\"authors\":\"S Fatikow,&nbsp;K Sundermann\",\"doi\":\"10.1016/0066-4138(94)90051-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a new control system for the intelligent force control of multifingered robot grips which combines both fuzzy-based adaptation level and a neural-based one with a conventional PID-controller. The most attention is given to the neural-based force adaptation level implemented by three-layered back-propagation neural networks. A computer based simulation system for the peg-in-hole insertion task is developed to analyze the capabilities of the neural controllers. Their behaviour is discussed by comparing them to conventional and fuzzy-based force controllers performing the same task.</p></div>\",\"PeriodicalId\":100097,\"journal\":{\"name\":\"Annual Review in Automatic Programming\",\"volume\":\"19 \",\"pages\":\"Pages 111-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0066-4138(94)90051-5\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review in Automatic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0066413894900515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的多指机器人握把智能力控制系统,该系统将基于模糊的自适应水平和基于神经的自适应水平与传统的pid控制器相结合。重点研究了三层反向传播神经网络实现的基于神经的力适应水平。为分析神经控制器的性能,开发了一套基于计算机的孔内插钉仿真系统。通过将它们与执行相同任务的传统和基于模糊的力控制器进行比较,讨论了它们的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural-based learning in grasp force control of a robot hand

In this paper, we present a new control system for the intelligent force control of multifingered robot grips which combines both fuzzy-based adaptation level and a neural-based one with a conventional PID-controller. The most attention is given to the neural-based force adaptation level implemented by three-layered back-propagation neural networks. A computer based simulation system for the peg-in-hole insertion task is developed to analyze the capabilities of the neural controllers. Their behaviour is discussed by comparing them to conventional and fuzzy-based force controllers performing the same task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信