基于费雪标准和加权距离的多类分类法

Meng Ao, S.Z. Li
{"title":"基于费雪标准和加权距离的多类分类法","authors":"Meng Ao, S.Z. Li","doi":"10.1109/CCPR.2008.17","DOIUrl":null,"url":null,"abstract":"Linear discriminant analysis (LDA) is an efficient dimensionality reduction algorithm. In this paper we propose a new Fisher criteria with weighted distance (FCWWD) to find an optimal projection for multi-class classification tasks. We replace the classical linear function with a nonlinear weight function to describe the distances between samples in Fisher criteria. What's more, we give a new algorithm based on this criteria along with a theoretical explanation that our algorithm benefits from an approximation of the ROC optimization. Experimental results demonstrate the efficiency of our method to improve the multi-class classification performance.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Class Classification Based on Fisher Criteria with Weighted Distance\",\"authors\":\"Meng Ao, S.Z. Li\",\"doi\":\"10.1109/CCPR.2008.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear discriminant analysis (LDA) is an efficient dimensionality reduction algorithm. In this paper we propose a new Fisher criteria with weighted distance (FCWWD) to find an optimal projection for multi-class classification tasks. We replace the classical linear function with a nonlinear weight function to describe the distances between samples in Fisher criteria. What's more, we give a new algorithm based on this criteria along with a theoretical explanation that our algorithm benefits from an approximation of the ROC optimization. Experimental results demonstrate the efficiency of our method to improve the multi-class classification performance.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性判别分析(LDA)是一种高效的降维算法。在本文中,我们提出了一种新的 Fisher criteria with weighted distance (FCWWD),用于寻找多类分类任务的最佳投影。在 Fisher 准则中,我们用非线性权重函数取代了经典的线性函数来描述样本之间的距离。此外,我们还给出了一种基于该标准的新算法,并从理论上解释了我们的算法得益于 ROC 优化的近似值。实验结果表明,我们的方法能有效提高多类分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Class Classification Based on Fisher Criteria with Weighted Distance
Linear discriminant analysis (LDA) is an efficient dimensionality reduction algorithm. In this paper we propose a new Fisher criteria with weighted distance (FCWWD) to find an optimal projection for multi-class classification tasks. We replace the classical linear function with a nonlinear weight function to describe the distances between samples in Fisher criteria. What's more, we give a new algorithm based on this criteria along with a theoretical explanation that our algorithm benefits from an approximation of the ROC optimization. Experimental results demonstrate the efficiency of our method to improve the multi-class classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信