基于平铺运算的SPIHT算法分析

G. Sadashivappa, M. Jayakar, K. A. Babu
{"title":"基于平铺运算的SPIHT算法分析","authors":"G. Sadashivappa, M. Jayakar, K. A. Babu","doi":"10.1109/ICSAP.2010.34","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study the performance of wavelet filters, using SPIHT algorithm with tiling operations for image compression. Tiling operations will be useful when images to be compressed are larger in size. Performance of different wavelets on image compression for different level of wavelet decomposition and for different tiling size is studied. Data redundancy is a fundamental issue in image compression. A lossy image compression (SPIHT with tiling) technique which provides a higher level of data reduction but result in a less than perfect reconstruction of original image is implemented here using MATLAB software. Two different resolution of Lena image are used for analysis. Image Quality is measured objectively using PSNR (peak signal to noise ratio) and execution time is verified with respect to the tiling size and level of wavelet decomposition.","PeriodicalId":303366,"journal":{"name":"2010 International Conference on Signal Acquisition and Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of SPIHT Algorithm Using Tiling Operations\",\"authors\":\"G. Sadashivappa, M. Jayakar, K. A. Babu\",\"doi\":\"10.1109/ICSAP.2010.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study the performance of wavelet filters, using SPIHT algorithm with tiling operations for image compression. Tiling operations will be useful when images to be compressed are larger in size. Performance of different wavelets on image compression for different level of wavelet decomposition and for different tiling size is studied. Data redundancy is a fundamental issue in image compression. A lossy image compression (SPIHT with tiling) technique which provides a higher level of data reduction but result in a less than perfect reconstruction of original image is implemented here using MATLAB software. Two different resolution of Lena image are used for analysis. Image Quality is measured objectively using PSNR (peak signal to noise ratio) and execution time is verified with respect to the tiling size and level of wavelet decomposition.\",\"PeriodicalId\":303366,\"journal\":{\"name\":\"2010 International Conference on Signal Acquisition and Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Signal Acquisition and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAP.2010.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Signal Acquisition and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAP.2010.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是研究小波滤波器的性能,利用SPIHT算法和平铺运算进行图像压缩。当要压缩的图像尺寸较大时,平铺操作将非常有用。研究了不同小波分解级别和不同铺层尺寸下不同小波对图像压缩的性能。数据冗余是图像压缩中的一个基本问题。使用MATLAB软件实现了一种有损图像压缩(SPIHT with tiling)技术,该技术提供了更高水平的数据缩减,但导致原始图像的重建不完美。采用两种不同分辨率的Lena图像进行分析。利用峰值信噪比客观地衡量图像质量,并根据小波分解的平铺大小和程度来验证执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of SPIHT Algorithm Using Tiling Operations
The aim of this paper is to study the performance of wavelet filters, using SPIHT algorithm with tiling operations for image compression. Tiling operations will be useful when images to be compressed are larger in size. Performance of different wavelets on image compression for different level of wavelet decomposition and for different tiling size is studied. Data redundancy is a fundamental issue in image compression. A lossy image compression (SPIHT with tiling) technique which provides a higher level of data reduction but result in a less than perfect reconstruction of original image is implemented here using MATLAB software. Two different resolution of Lena image are used for analysis. Image Quality is measured objectively using PSNR (peak signal to noise ratio) and execution time is verified with respect to the tiling size and level of wavelet decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信