基于随机矩阵分解的改进子空间k -均值性能

Trevor C. Vannoy, Jacob J. Senecal, Veronika Strnadová-Neeley
{"title":"基于随机矩阵分解的改进子空间k -均值性能","authors":"Trevor C. Vannoy, Jacob J. Senecal, Veronika Strnadová-Neeley","doi":"10.1109/GlobalSIP45357.2019.8969298","DOIUrl":null,"url":null,"abstract":"Subspace clustering algorithms provide the capability to project a dataset onto bases that facilitate clustering. Proposed in 2017, the subspace k-means algorithm simultaneously performs clustering and dimensionality reduction with the goal of finding the optimal subspace for the cluster structure; this is accomplished by incorporating a trade-off between cluster and noise subspaces in the objective function. In this study, we improve subspace k-means by estimating a critical transformation matrix via a randomized eigenvalue decomposition. Our modification results in an order of magnitude runtime improvement on high dimensional data, while retaining the simplicity, interpretable subspace projections, and convergence guarantees of the original algorithm.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Subspace K-Means Performance via a Randomized Matrix Decomposition\",\"authors\":\"Trevor C. Vannoy, Jacob J. Senecal, Veronika Strnadová-Neeley\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace clustering algorithms provide the capability to project a dataset onto bases that facilitate clustering. Proposed in 2017, the subspace k-means algorithm simultaneously performs clustering and dimensionality reduction with the goal of finding the optimal subspace for the cluster structure; this is accomplished by incorporating a trade-off between cluster and noise subspaces in the objective function. In this study, we improve subspace k-means by estimating a critical transformation matrix via a randomized eigenvalue decomposition. Our modification results in an order of magnitude runtime improvement on high dimensional data, while retaining the simplicity, interpretable subspace projections, and convergence guarantees of the original algorithm.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子空间聚类算法提供了将数据集投影到便于聚类的基上的能力。2017年提出的子空间k-means算法同时进行聚类和降维,目标是为聚类结构找到最优子空间;这是通过在目标函数中结合聚类和噪声子空间之间的权衡来实现的。在本研究中,我们通过随机特征值分解估计临界变换矩阵来改进子空间k-means。我们的改进在高维数据上的运行时间提高了一个数量级,同时保留了原始算法的简单性、可解释的子空间投影和收敛性保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Subspace K-Means Performance via a Randomized Matrix Decomposition
Subspace clustering algorithms provide the capability to project a dataset onto bases that facilitate clustering. Proposed in 2017, the subspace k-means algorithm simultaneously performs clustering and dimensionality reduction with the goal of finding the optimal subspace for the cluster structure; this is accomplished by incorporating a trade-off between cluster and noise subspaces in the objective function. In this study, we improve subspace k-means by estimating a critical transformation matrix via a randomized eigenvalue decomposition. Our modification results in an order of magnitude runtime improvement on high dimensional data, while retaining the simplicity, interpretable subspace projections, and convergence guarantees of the original algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信