基于LBP和ga的二维Tsallis-Havrda-Charvat熵最优参数选择的图像阈值分割

Rakhi Tewari, S. Dhar, Hiranmoy Roy
{"title":"基于LBP和ga的二维Tsallis-Havrda-Charvat熵最优参数选择的图像阈值分割","authors":"Rakhi Tewari, S. Dhar, Hiranmoy Roy","doi":"10.1109/ICRCICN.2016.7813637","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an automatic thresholding method based on 2D Tsallis-Havrda-Charvat entropy and histogram of local binary patterns (LBP). Tsallis-Havrda-Charvat entropy is extracted from 2D histogram, which is calculated by using the LBP decimal value of a pixel and the average decimal value of its local neighborhood. Few parameters influenced the thresholding results. Therefore, an automatic optimal parameter selection using GA (Genetic algorithm) has been proposed here. Based on the optimal parameter selection for 2D Tsallis-Havrda-Charvat entropy using GA and maximizing the criterion function, we obtain the best possible threshold pair. LBP histogram is adopted to capture the texture information. LBP's high performance for texture characterization helps to make our method more suitable for thresholding the images enriched with texture information. Finally, GA improved the thresholding result by selecting optimal parameters. In this paper, we test the efficiency of our thresholding method when applied to some real-world images, and experiments show that our proposed method is promising and robust in terms of efficiency.","PeriodicalId":254393,"journal":{"name":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image thresholding using LBP and GA-based optimal parameter selection for 2D Tsallis-Havrda-Charvat entropy\",\"authors\":\"Rakhi Tewari, S. Dhar, Hiranmoy Roy\",\"doi\":\"10.1109/ICRCICN.2016.7813637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an automatic thresholding method based on 2D Tsallis-Havrda-Charvat entropy and histogram of local binary patterns (LBP). Tsallis-Havrda-Charvat entropy is extracted from 2D histogram, which is calculated by using the LBP decimal value of a pixel and the average decimal value of its local neighborhood. Few parameters influenced the thresholding results. Therefore, an automatic optimal parameter selection using GA (Genetic algorithm) has been proposed here. Based on the optimal parameter selection for 2D Tsallis-Havrda-Charvat entropy using GA and maximizing the criterion function, we obtain the best possible threshold pair. LBP histogram is adopted to capture the texture information. LBP's high performance for texture characterization helps to make our method more suitable for thresholding the images enriched with texture information. Finally, GA improved the thresholding result by selecting optimal parameters. In this paper, we test the efficiency of our thresholding method when applied to some real-world images, and experiments show that our proposed method is promising and robust in terms of efficiency.\",\"PeriodicalId\":254393,\"journal\":{\"name\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2016.7813637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2016.7813637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于二维Tsallis-Havrda-Charvat熵和局部二值模式直方图的自动阈值分割方法。从二维直方图中提取Tsallis-Havrda-Charvat熵,利用像素的LBP十进制值及其局部邻域的平均十进制值计算直方图熵。影响阈值结果的参数很少。为此,本文提出了一种基于遗传算法的自动优化参数选择方法。利用遗传算法对二维Tsallis-Havrda-Charvat熵进行最优参数选择,并最大化准则函数,得到最优可能阈值对。采用LBP直方图捕获纹理信息。LBP在纹理表征方面的高性能有助于我们的方法更适合于对富含纹理信息的图像进行阈值分割。最后,通过选择最优参数对阈值分割结果进行改进。在本文中,我们将阈值分割方法应用于一些真实世界的图像,实验表明我们的方法在效率方面是有前途的和鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image thresholding using LBP and GA-based optimal parameter selection for 2D Tsallis-Havrda-Charvat entropy
In this paper, we propose an automatic thresholding method based on 2D Tsallis-Havrda-Charvat entropy and histogram of local binary patterns (LBP). Tsallis-Havrda-Charvat entropy is extracted from 2D histogram, which is calculated by using the LBP decimal value of a pixel and the average decimal value of its local neighborhood. Few parameters influenced the thresholding results. Therefore, an automatic optimal parameter selection using GA (Genetic algorithm) has been proposed here. Based on the optimal parameter selection for 2D Tsallis-Havrda-Charvat entropy using GA and maximizing the criterion function, we obtain the best possible threshold pair. LBP histogram is adopted to capture the texture information. LBP's high performance for texture characterization helps to make our method more suitable for thresholding the images enriched with texture information. Finally, GA improved the thresholding result by selecting optimal parameters. In this paper, we test the efficiency of our thresholding method when applied to some real-world images, and experiments show that our proposed method is promising and robust in terms of efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信