求解不平衡三相dopf的分布式计算方法

Abolfazl Mosaddegh, C. Cañizares, Kankar Bhattacharya
{"title":"求解不平衡三相dopf的分布式计算方法","authors":"Abolfazl Mosaddegh, C. Cañizares, Kankar Bhattacharya","doi":"10.1109/EPEC.2015.7379985","DOIUrl":null,"url":null,"abstract":"Distribution systems have been gradually improved with new technologies. They have been upgraded from the traditional system with low-level control to a smart-grid system with high-level control. In the present work, a mathematical model of an unbalanced three-phase distribution system, including ZIP loads and other components of distribution systems is used, and a Genetic Algorithm (GA) -based Distribution Optimal Power Flow (DOPF) model is applied to find the optimal integer solutions for discrete system control elements such as Load Tap Changers (LTCs) and Switched Capacitors (SCs) in a practical feeder. In order to reduce the computational burden and consequently the run-time, a communication Middleware System for smart grids is used to solve the GA-based DOPF problem on a decentralized computer system using a parallel computing approach. This system is responsible for running the model, managing all communication between the nodes, and transferring the results between various parts of the parallel system. Comparing with heuristic methods with faster sub-optimal solutions in a centralized computer system, the present work is expected to yield better optimal solution within acceptable practical run-times.","PeriodicalId":231255,"journal":{"name":"2015 IEEE Electrical Power and Energy Conference (EPEC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Distributed computing approach to solve unbalanced three-phase DOPFs\",\"authors\":\"Abolfazl Mosaddegh, C. Cañizares, Kankar Bhattacharya\",\"doi\":\"10.1109/EPEC.2015.7379985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distribution systems have been gradually improved with new technologies. They have been upgraded from the traditional system with low-level control to a smart-grid system with high-level control. In the present work, a mathematical model of an unbalanced three-phase distribution system, including ZIP loads and other components of distribution systems is used, and a Genetic Algorithm (GA) -based Distribution Optimal Power Flow (DOPF) model is applied to find the optimal integer solutions for discrete system control elements such as Load Tap Changers (LTCs) and Switched Capacitors (SCs) in a practical feeder. In order to reduce the computational burden and consequently the run-time, a communication Middleware System for smart grids is used to solve the GA-based DOPF problem on a decentralized computer system using a parallel computing approach. This system is responsible for running the model, managing all communication between the nodes, and transferring the results between various parts of the parallel system. Comparing with heuristic methods with faster sub-optimal solutions in a centralized computer system, the present work is expected to yield better optimal solution within acceptable practical run-times.\",\"PeriodicalId\":231255,\"journal\":{\"name\":\"2015 IEEE Electrical Power and Energy Conference (EPEC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Electrical Power and Energy Conference (EPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2015.7379985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2015.7379985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着新技术的发展,配电系统逐步得到完善。它们已经从传统的低水平控制系统升级为具有高水平控制的智能电网系统。本文采用不平衡三相配电系统的数学模型,包括ZIP负荷和配电系统的其他组成部分,并采用基于遗传算法(GA)的配电最优潮流(DOPF)模型来寻找实际馈线中负载分接开关(LTCs)和开关电容器(SCs)等离散系统控制元件的最优整数解。为了减少计算量和运行时间,采用一种智能电网通信中间件系统,采用并行计算的方法解决分布式计算机系统上基于遗传算法的DOPF问题。该系统负责运行模型,管理节点之间的所有通信,并在并行系统的各个部分之间传递结果。与在集中式计算机系统中具有更快次优解的启发式方法相比,本工作有望在可接受的实际运行时间内产生更好的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed computing approach to solve unbalanced three-phase DOPFs
Distribution systems have been gradually improved with new technologies. They have been upgraded from the traditional system with low-level control to a smart-grid system with high-level control. In the present work, a mathematical model of an unbalanced three-phase distribution system, including ZIP loads and other components of distribution systems is used, and a Genetic Algorithm (GA) -based Distribution Optimal Power Flow (DOPF) model is applied to find the optimal integer solutions for discrete system control elements such as Load Tap Changers (LTCs) and Switched Capacitors (SCs) in a practical feeder. In order to reduce the computational burden and consequently the run-time, a communication Middleware System for smart grids is used to solve the GA-based DOPF problem on a decentralized computer system using a parallel computing approach. This system is responsible for running the model, managing all communication between the nodes, and transferring the results between various parts of the parallel system. Comparing with heuristic methods with faster sub-optimal solutions in a centralized computer system, the present work is expected to yield better optimal solution within acceptable practical run-times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信