使用嵌入式HMM的音乐识别

Kai Chen, Sheng Gao, Peiqi Chai, Qibin Sun
{"title":"使用嵌入式HMM的音乐识别","authors":"Kai Chen, Sheng Gao, Peiqi Chai, Qibin Sun","doi":"10.1109/MMSP.2005.248550","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for music identification based on embedded hidden Markov model (EHMM). Differing from conventional HMM, the EHMM estimates the emission probability of its external HMM from the second, state specific HMM, which is referred as internal HMM. EHMM clusters the feature blocks with its external HMM and describes spectral and the temporal structures of each feature block with its internal HMM. Our analysis and experimental results show that the proposed method for music identification achieves higher accuracy and lower complexity than previous approaches","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Music Identification Using Embedded HMM\",\"authors\":\"Kai Chen, Sheng Gao, Peiqi Chai, Qibin Sun\",\"doi\":\"10.1109/MMSP.2005.248550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method for music identification based on embedded hidden Markov model (EHMM). Differing from conventional HMM, the EHMM estimates the emission probability of its external HMM from the second, state specific HMM, which is referred as internal HMM. EHMM clusters the feature blocks with its external HMM and describes spectral and the temporal structures of each feature block with its internal HMM. Our analysis and experimental results show that the proposed method for music identification achieves higher accuracy and lower complexity than previous approaches\",\"PeriodicalId\":191719,\"journal\":{\"name\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE 7th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2005.248550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于嵌入式隐马尔可夫模型(EHMM)的音乐识别方法。与传统HMM不同的是,EHMM从第二个特定于状态的HMM(称为内部HMM)中估计其外部HMM的发射概率。EHMM利用其外部HMM对特征块进行聚类,并用其内部HMM描述每个特征块的谱结构和时间结构。分析和实验结果表明,本文提出的音乐识别方法具有较高的准确率和较低的复杂度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Music Identification Using Embedded HMM
In this paper, we propose a new method for music identification based on embedded hidden Markov model (EHMM). Differing from conventional HMM, the EHMM estimates the emission probability of its external HMM from the second, state specific HMM, which is referred as internal HMM. EHMM clusters the feature blocks with its external HMM and describes spectral and the temporal structures of each feature block with its internal HMM. Our analysis and experimental results show that the proposed method for music identification achieves higher accuracy and lower complexity than previous approaches
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信