4340大型钢轴在循环载荷和频繁超载作用下的扭转疲劳断裂

{"title":"4340大型钢轴在循环载荷和频繁超载作用下的扭转疲劳断裂","authors":"","doi":"10.31399/asm.fach.modes.c0091096","DOIUrl":null,"url":null,"abstract":"\n A 4340 steel shaft, the driving member of a large rotor subject to cyclic loading and frequent overloads, broke after three weeks of operation. The driving shaft contained a shear groove at which the shaft should break if a sudden high overload occurred, thus preventing damage to an expensive gear mechanism. The rotor was subjected to severe chatter, which was an abnormal condition resulting from a series of continuous small overloads occurring at a frequency of around three per second. Investigation (visual inspection, hardness testing, and hot acid etch images) supported the conclusion that the basic failure mechanism was fracture by torsional fatigue, which started at numerous surface shear cracks, both longitudinal and transverse, that developed in the periphery of the root of the shear groove. These shear cracks resulted from high peak loads caused by chatter. The shear groove in the shaft had performed its function, but at a lower overload level than intended. Recommendations included increasing the fatigue strength of the shaft by shot peening the shear groove to minimize chatter.","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torsional-Fatigue Fracture of a Large 4340 Steel Shaft That Was Subject to Cyclic Loading and Frequent Overloads\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.modes.c0091096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A 4340 steel shaft, the driving member of a large rotor subject to cyclic loading and frequent overloads, broke after three weeks of operation. The driving shaft contained a shear groove at which the shaft should break if a sudden high overload occurred, thus preventing damage to an expensive gear mechanism. The rotor was subjected to severe chatter, which was an abnormal condition resulting from a series of continuous small overloads occurring at a frequency of around three per second. Investigation (visual inspection, hardness testing, and hot acid etch images) supported the conclusion that the basic failure mechanism was fracture by torsional fatigue, which started at numerous surface shear cracks, both longitudinal and transverse, that developed in the periphery of the root of the shear groove. These shear cracks resulted from high peak loads caused by chatter. The shear groove in the shaft had performed its function, but at a lower overload level than intended. Recommendations included increasing the fatigue strength of the shaft by shot peening the shear groove to minimize chatter.\",\"PeriodicalId\":231268,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.modes.c0091096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c0091096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

4340钢轴是大型转子的驱动部件,由于循环载荷和频繁过载,在运行三周后断裂。传动轴包含一个剪切槽,如果突然发生高过载,轴应在此断裂,从而防止损坏昂贵的齿轮机构。转子受到严重的颤振,这是一种由一系列连续的小过载引起的异常情况,频率约为每秒3次。调查(目视检查、硬度测试和热酸腐蚀图像)支持这样的结论,即基本的破坏机制是由扭转疲劳断裂,扭转疲劳开始于许多纵向和横向的表面剪切裂纹,这些剪切裂纹在剪切槽根部的周围发展起来。这些剪切裂纹是由颤振引起的峰值荷载引起的。轴上的剪切槽发挥了其作用,但其过载水平低于预期。建议包括通过喷丸强化剪切槽来增加轴的疲劳强度,以减少颤振。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torsional-Fatigue Fracture of a Large 4340 Steel Shaft That Was Subject to Cyclic Loading and Frequent Overloads
A 4340 steel shaft, the driving member of a large rotor subject to cyclic loading and frequent overloads, broke after three weeks of operation. The driving shaft contained a shear groove at which the shaft should break if a sudden high overload occurred, thus preventing damage to an expensive gear mechanism. The rotor was subjected to severe chatter, which was an abnormal condition resulting from a series of continuous small overloads occurring at a frequency of around three per second. Investigation (visual inspection, hardness testing, and hot acid etch images) supported the conclusion that the basic failure mechanism was fracture by torsional fatigue, which started at numerous surface shear cracks, both longitudinal and transverse, that developed in the periphery of the root of the shear groove. These shear cracks resulted from high peak loads caused by chatter. The shear groove in the shaft had performed its function, but at a lower overload level than intended. Recommendations included increasing the fatigue strength of the shaft by shot peening the shear groove to minimize chatter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信