{"title":"铸造低合金钢钳口的脆性断裂是由壳体和芯部的缩孔率和低延展性引起的","authors":"","doi":"10.31399/asm.fach.machtools.c0089534","DOIUrl":null,"url":null,"abstract":"\n The specially designed sand-cast low-alloy steel jaws that were implemented to stretch the wire used in prestressed concrete beams fractured. The fractures were found to be macroscale brittle and exhibited very little evidence of deformation. The surface of the jaws was disclosed by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about 150 deg C by the hardness values (close to the maximum hardness values attainable) for the core. It was interpreted that the low tempering temperature used may have contributed to the brittleness. The procedures used for casting the jaws were recommended to be revised to eliminate the internal shrinkage porosity. Tempering at a slightly higher temperature to reduce surface and core hardness was recommended.","PeriodicalId":446028,"journal":{"name":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brittle Fracture of Cast Low- Alloy Steel Jaws Because of Shrinkage Porosity and Low Ductility of Case and Core\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.machtools.c0089534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The specially designed sand-cast low-alloy steel jaws that were implemented to stretch the wire used in prestressed concrete beams fractured. The fractures were found to be macroscale brittle and exhibited very little evidence of deformation. The surface of the jaws was disclosed by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about 150 deg C by the hardness values (close to the maximum hardness values attainable) for the core. It was interpreted that the low tempering temperature used may have contributed to the brittleness. The procedures used for casting the jaws were recommended to be revised to eliminate the internal shrinkage porosity. Tempering at a slightly higher temperature to reduce surface and core hardness was recommended.\",\"PeriodicalId\":446028,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.machtools.c0089534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Machine Tools and Manufacturing Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.machtools.c0089534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brittle Fracture of Cast Low- Alloy Steel Jaws Because of Shrinkage Porosity and Low Ductility of Case and Core
The specially designed sand-cast low-alloy steel jaws that were implemented to stretch the wire used in prestressed concrete beams fractured. The fractures were found to be macroscale brittle and exhibited very little evidence of deformation. The surface of the jaws was disclosed by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about 150 deg C by the hardness values (close to the maximum hardness values attainable) for the core. It was interpreted that the low tempering temperature used may have contributed to the brittleness. The procedures used for casting the jaws were recommended to be revised to eliminate the internal shrinkage porosity. Tempering at a slightly higher temperature to reduce surface and core hardness was recommended.