递归神经网络的范数积模型

J. Hou, F. Salam
{"title":"递归神经网络的范数积模型","authors":"J. Hou, F. Salam","doi":"10.1109/IJCNN.1992.287164","DOIUrl":null,"url":null,"abstract":"The authors present a model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima. Therefore, all the prespecified patterns can be stored and retrieved. The authors summarize the model's stability properties. They then give two examples, showing how this model can be used in image recognition and association.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A product-of-norms model for recurrent neural networks\",\"authors\":\"J. Hou, F. Salam\",\"doi\":\"10.1109/IJCNN.1992.287164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima. Therefore, all the prespecified patterns can be stored and retrieved. The authors summarize the model's stability properties. They then give two examples, showing how this model can be used in image recognition and association.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.287164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.287164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种循环人工神经网络模型,该模型可以存储任意数量的任意预设模式作为能量局部最小值。因此,可以存储和检索所有预先指定的模式。总结了该模型的稳定性。然后,他们给出了两个例子,展示了如何将该模型用于图像识别和关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A product-of-norms model for recurrent neural networks
The authors present a model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima. Therefore, all the prespecified patterns can be stored and retrieved. The authors summarize the model's stability properties. They then give two examples, showing how this model can be used in image recognition and association.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信