基于深度限制的反事实后悔最小化和信念状态的不完全信息棋盘博弈学习策略

Chen Chen, Tomoyuki Kaneko
{"title":"基于深度限制的反事实后悔最小化和信念状态的不完全信息棋盘博弈学习策略","authors":"Chen Chen, Tomoyuki Kaneko","doi":"10.1109/CoG51982.2022.9893713","DOIUrl":null,"url":null,"abstract":"Counterfactual Regret Minimization (CFR) variants have mastered many Poker games by effectively handling a large number of opportunities in private information within relatively short playing histories of the game. However, for imperfect information board games with infrequent chance events but long histories or even loops, the effectiveness of CFR is often limited in practice as the computational complexity grows exponentially with the game length. In this paper, we propose Belief States with Approximation by Dirichlet Distributions and Depth-limited External Sampling for Board Games that enables an effective abstraction even with existence of loops. Experiments show that our proposed methods have the ability to learn reasonable strategies.","PeriodicalId":394281,"journal":{"name":"2022 IEEE Conference on Games (CoG)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Strategies for Imperfect Information Board Games Using Depth-Limited Counterfactual Regret Minimization and Belief State\",\"authors\":\"Chen Chen, Tomoyuki Kaneko\",\"doi\":\"10.1109/CoG51982.2022.9893713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counterfactual Regret Minimization (CFR) variants have mastered many Poker games by effectively handling a large number of opportunities in private information within relatively short playing histories of the game. However, for imperfect information board games with infrequent chance events but long histories or even loops, the effectiveness of CFR is often limited in practice as the computational complexity grows exponentially with the game length. In this paper, we propose Belief States with Approximation by Dirichlet Distributions and Depth-limited External Sampling for Board Games that enables an effective abstraction even with existence of loops. Experiments show that our proposed methods have the ability to learn reasonable strategies.\",\"PeriodicalId\":394281,\"journal\":{\"name\":\"2022 IEEE Conference on Games (CoG)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Games (CoG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoG51982.2022.9893713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Games (CoG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoG51982.2022.9893713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反事实遗憾最小化(CFR)变体通过在相对较短的游戏历史中有效地处理私人信息中的大量机会,掌握了许多扑克游戏。然而,对于不完全信息的棋盘游戏,其偶然事件并不频繁,但历史较长,甚至循环较长,由于计算复杂度随着游戏长度呈指数增长,CFR的有效性在实践中往往受到限制。在本文中,我们提出了基于Dirichlet分布近似的信念状态和深度有限的外部采样,即使存在循环,也能有效地抽象棋盘游戏。实验表明,我们提出的方法具有学习合理策略的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Strategies for Imperfect Information Board Games Using Depth-Limited Counterfactual Regret Minimization and Belief State
Counterfactual Regret Minimization (CFR) variants have mastered many Poker games by effectively handling a large number of opportunities in private information within relatively short playing histories of the game. However, for imperfect information board games with infrequent chance events but long histories or even loops, the effectiveness of CFR is often limited in practice as the computational complexity grows exponentially with the game length. In this paper, we propose Belief States with Approximation by Dirichlet Distributions and Depth-limited External Sampling for Board Games that enables an effective abstraction even with existence of loops. Experiments show that our proposed methods have the ability to learn reasonable strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信