Filamory Abraham Michael Keita, Ouagninia Hili, Serge-Hippolyte Arnaud Kanga
{"title":"无限方差稳定Gegenbaeur Arfisma模型","authors":"Filamory Abraham Michael Keita, Ouagninia Hili, Serge-Hippolyte Arnaud Kanga","doi":"10.16929/as/2021.2789.184","DOIUrl":null,"url":null,"abstract":"This paper develops the theory of the Gegenbauer AutoRegressive Fractionally Integrated Seasonal Moving Average (GARFISMA) process with alpha-stable innovations.We establish its conditions for causality and invertibility. This is a finite parameter process which exhibits high variability, long memory, cyclical, and seasonality in financial, hydrological data studies, and more. We perform some simulations to illustrate the behavior of our process.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite variance stable Gegenbaeur Arfisma models\",\"authors\":\"Filamory Abraham Michael Keita, Ouagninia Hili, Serge-Hippolyte Arnaud Kanga\",\"doi\":\"10.16929/as/2021.2789.184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the theory of the Gegenbauer AutoRegressive Fractionally Integrated Seasonal Moving Average (GARFISMA) process with alpha-stable innovations.We establish its conditions for causality and invertibility. This is a finite parameter process which exhibits high variability, long memory, cyclical, and seasonality in financial, hydrological data studies, and more. We perform some simulations to illustrate the behavior of our process.\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/as/2021.2789.184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2021.2789.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper develops the theory of the Gegenbauer AutoRegressive Fractionally Integrated Seasonal Moving Average (GARFISMA) process with alpha-stable innovations.We establish its conditions for causality and invertibility. This is a finite parameter process which exhibits high variability, long memory, cyclical, and seasonality in financial, hydrological data studies, and more. We perform some simulations to illustrate the behavior of our process.