多波束卫星系统返回链路的干扰协调

Ui Yi Ng, A. Kyrgiazos, B. Evans
{"title":"多波束卫星系统返回链路的干扰协调","authors":"Ui Yi Ng, A. Kyrgiazos, B. Evans","doi":"10.1109/ASMS-SPSC.2014.6934569","DOIUrl":null,"url":null,"abstract":"Future internet demands are being increased dramatically year by year. Terrestrial systems are unable to satisfy these demands in all geographical areas and thus broadband access by satellite is a key service provision platform. Considering the traffic demands, the raw capacity should approach a Terabit/s by 2020 to meet these demands. The satellite communications network will be a star-based topology, where User Terminals (UT) from multiple beams communicate via central Gateway Earth Stations (GES). The return link from UT to satellite will use DVB-RCS2 Multi-Frequency Time Division Multiple Access (MF-TDMA) transmission scheme in Ka band (30GHz), while the return feeder link from satellite to GES in Q band (40 GHz). Due to generation of large number of narrow user beams, the interference starts becoming a limiting factor in the system's dimensioning. Herein, interference coordination schemes, borrowed from terrestrial cellular systems, are examined in terms of applicability and C/I performance. In addition, an algorithm for dynamic interference coordination is proposed to schedule the transmissions of the users in time-frequency domain of the return link, aiming to improve the C/I. The performance of these schemes and the proposed algorithm is assessed over a 302 user beams satellite system with practical antenna radiation patterns.","PeriodicalId":192172,"journal":{"name":"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interference coordination for the return link of a multibeam satellite system\",\"authors\":\"Ui Yi Ng, A. Kyrgiazos, B. Evans\",\"doi\":\"10.1109/ASMS-SPSC.2014.6934569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future internet demands are being increased dramatically year by year. Terrestrial systems are unable to satisfy these demands in all geographical areas and thus broadband access by satellite is a key service provision platform. Considering the traffic demands, the raw capacity should approach a Terabit/s by 2020 to meet these demands. The satellite communications network will be a star-based topology, where User Terminals (UT) from multiple beams communicate via central Gateway Earth Stations (GES). The return link from UT to satellite will use DVB-RCS2 Multi-Frequency Time Division Multiple Access (MF-TDMA) transmission scheme in Ka band (30GHz), while the return feeder link from satellite to GES in Q band (40 GHz). Due to generation of large number of narrow user beams, the interference starts becoming a limiting factor in the system's dimensioning. Herein, interference coordination schemes, borrowed from terrestrial cellular systems, are examined in terms of applicability and C/I performance. In addition, an algorithm for dynamic interference coordination is proposed to schedule the transmissions of the users in time-frequency domain of the return link, aiming to improve the C/I. The performance of these schemes and the proposed algorithm is assessed over a 302 user beams satellite system with practical antenna radiation patterns.\",\"PeriodicalId\":192172,\"journal\":{\"name\":\"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMS-SPSC.2014.6934569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMS-SPSC.2014.6934569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

未来的互联网需求正逐年急剧增长。地面系统无法满足所有地理区域的这些需求,因此卫星宽带接入是一个关键的业务提供平台。考虑到流量需求,到2020年,原始容量应接近1太比特/秒,以满足这些需求。卫星通信网络将采用星型拓扑结构,其中来自多个波束的用户终端(UT)通过中央网关地面站(GES)进行通信。从UT到卫星的返回链路将采用Ka频段(30GHz)的DVB-RCS2多频时分多址(MF-TDMA)传输方案,而从卫星到GES的返回馈线链路将采用Q频段(40ghz)。由于产生大量的窄用户波束,干扰开始成为系统尺寸的限制因素。本文对借鉴地面蜂窝系统的干扰协调方案的适用性和C/I性能进行了研究。此外,提出了一种动态干扰协调算法,在回程链路时频域对用户的传输进行调度,以提高C/I。在具有实际天线辐射方向图的302用户波束卫星系统上对这些方案和算法的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interference coordination for the return link of a multibeam satellite system
Future internet demands are being increased dramatically year by year. Terrestrial systems are unable to satisfy these demands in all geographical areas and thus broadband access by satellite is a key service provision platform. Considering the traffic demands, the raw capacity should approach a Terabit/s by 2020 to meet these demands. The satellite communications network will be a star-based topology, where User Terminals (UT) from multiple beams communicate via central Gateway Earth Stations (GES). The return link from UT to satellite will use DVB-RCS2 Multi-Frequency Time Division Multiple Access (MF-TDMA) transmission scheme in Ka band (30GHz), while the return feeder link from satellite to GES in Q band (40 GHz). Due to generation of large number of narrow user beams, the interference starts becoming a limiting factor in the system's dimensioning. Herein, interference coordination schemes, borrowed from terrestrial cellular systems, are examined in terms of applicability and C/I performance. In addition, an algorithm for dynamic interference coordination is proposed to schedule the transmissions of the users in time-frequency domain of the return link, aiming to improve the C/I. The performance of these schemes and the proposed algorithm is assessed over a 302 user beams satellite system with practical antenna radiation patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信