基于多项logit模型和累积环节模型的齿轮裂纹等级分类

Yizhen Hai, K. Tsui, M. Zuo
{"title":"基于多项logit模型和累积环节模型的齿轮裂纹等级分类","authors":"Yizhen Hai, K. Tsui, M. Zuo","doi":"10.1109/PHM.2012.6228904","DOIUrl":null,"url":null,"abstract":"In order to avoid machine related catastrophes, the early detection of cracks is in urgent demand. Sensors are put into the rotating parts of machine and vibration signal data are collected to diagnose machine health. This paper proposes a comprehensive method to look into the development of damage with multinomial logit model (MLM) and cumulative link model (CLM). We first select features according to analysis of variance (ANOVA), and then compare the MLM, CLM method with weighted k-nearest neighbor method (WKNN) - a black box machine learning algorithm and we conclude that these methods have their pros and cons in the diagnosis of faults.","PeriodicalId":444815,"journal":{"name":"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Gear crack level classification based on multinomial logit model and cumulative link model\",\"authors\":\"Yizhen Hai, K. Tsui, M. Zuo\",\"doi\":\"10.1109/PHM.2012.6228904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to avoid machine related catastrophes, the early detection of cracks is in urgent demand. Sensors are put into the rotating parts of machine and vibration signal data are collected to diagnose machine health. This paper proposes a comprehensive method to look into the development of damage with multinomial logit model (MLM) and cumulative link model (CLM). We first select features according to analysis of variance (ANOVA), and then compare the MLM, CLM method with weighted k-nearest neighbor method (WKNN) - a black box machine learning algorithm and we conclude that these methods have their pros and cons in the diagnosis of faults.\",\"PeriodicalId\":444815,\"journal\":{\"name\":\"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM.2012.6228904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM.2012.6228904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了避免与机器相关的灾难,迫切需要早期发现裂缝。在机器的转动部件中安装传感器,采集振动信号数据,诊断机器的健康状况。本文提出了用多项logit模型(MLM)和累积环节模型(CLM)综合研究损伤发展的方法。首先根据方差分析(ANOVA)选择特征,然后将MLM、CLM方法与加权k近邻方法(WKNN)进行比较,得出这些方法在故障诊断方面各有优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gear crack level classification based on multinomial logit model and cumulative link model
In order to avoid machine related catastrophes, the early detection of cracks is in urgent demand. Sensors are put into the rotating parts of machine and vibration signal data are collected to diagnose machine health. This paper proposes a comprehensive method to look into the development of damage with multinomial logit model (MLM) and cumulative link model (CLM). We first select features according to analysis of variance (ANOVA), and then compare the MLM, CLM method with weighted k-nearest neighbor method (WKNN) - a black box machine learning algorithm and we conclude that these methods have their pros and cons in the diagnosis of faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信