{"title":"用于分类的最近邻映射","authors":"N. Ishii, Ippei Torii, Y. Bao, Hidekazu Tanaka","doi":"10.1109/ICIS.2013.6607819","DOIUrl":null,"url":null,"abstract":"Dimension reduction of data is an important theme in the data processing and on the web to represent and manipulate higher dimensional data. Reduct in the rough set is a minimal subset of features, which has almost the same discernible power as the entire features in the higher dimensional scheme. But, there are problems in the application of reducts for classification. Here, we develop a method which connects reducts and the nearest neighbor method to classify data with higher classification accuracy. To improve the classification ability of reducts, we develop a new graph mapping method of the nearest neighbor based on reducts and weighted modified reducts for the classification with higher accuracy. Then, the mapping method is useful and the weighted modified reduct classifies with higher accuracy.","PeriodicalId":345020,"journal":{"name":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mapping of nearest neighbor for classification\",\"authors\":\"N. Ishii, Ippei Torii, Y. Bao, Hidekazu Tanaka\",\"doi\":\"10.1109/ICIS.2013.6607819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimension reduction of data is an important theme in the data processing and on the web to represent and manipulate higher dimensional data. Reduct in the rough set is a minimal subset of features, which has almost the same discernible power as the entire features in the higher dimensional scheme. But, there are problems in the application of reducts for classification. Here, we develop a method which connects reducts and the nearest neighbor method to classify data with higher classification accuracy. To improve the classification ability of reducts, we develop a new graph mapping method of the nearest neighbor based on reducts and weighted modified reducts for the classification with higher accuracy. Then, the mapping method is useful and the weighted modified reduct classifies with higher accuracy.\",\"PeriodicalId\":345020,\"journal\":{\"name\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2013.6607819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2013.6607819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dimension reduction of data is an important theme in the data processing and on the web to represent and manipulate higher dimensional data. Reduct in the rough set is a minimal subset of features, which has almost the same discernible power as the entire features in the higher dimensional scheme. But, there are problems in the application of reducts for classification. Here, we develop a method which connects reducts and the nearest neighbor method to classify data with higher classification accuracy. To improve the classification ability of reducts, we develop a new graph mapping method of the nearest neighbor based on reducts and weighted modified reducts for the classification with higher accuracy. Then, the mapping method is useful and the weighted modified reduct classifies with higher accuracy.