基于主动学习的多时相影像级联分类更新土地覆盖图

B. Demir, F. Bovolo, L. Bruzzone
{"title":"基于主动学习的多时相影像级联分类更新土地覆盖图","authors":"B. Demir, F. Bovolo, L. Bruzzone","doi":"10.1109/MULTI-TEMP.2011.6005047","DOIUrl":null,"url":null,"abstract":"This paper presents a novel active-learning (AL) technique in the context of the cascade classification of multitemporal remote-sensing images for updating land-cover maps. The proposed AL technique is based on the selection of unlabeled samples that have maximum uncertainty on their labels assigned by cascade classification, and explicitly exploits temporal correlation between multitemporal images. Uncertainty of samples is assessed by conditional entropy that is defined on the basis of class-conditional independence assumption in time domain. The proposed conditional entropy based AL method for cascade classification technique is compared with a marginal entropy based AL technique adopted in the context of single-date image classification. Experimental results obtained on two multispectral and multitemporal data sets show the effectiveness of the proposed technique.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"184 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Active-learning based cascade classification of multitemporal images for updating land-cover maps\",\"authors\":\"B. Demir, F. Bovolo, L. Bruzzone\",\"doi\":\"10.1109/MULTI-TEMP.2011.6005047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel active-learning (AL) technique in the context of the cascade classification of multitemporal remote-sensing images for updating land-cover maps. The proposed AL technique is based on the selection of unlabeled samples that have maximum uncertainty on their labels assigned by cascade classification, and explicitly exploits temporal correlation between multitemporal images. Uncertainty of samples is assessed by conditional entropy that is defined on the basis of class-conditional independence assumption in time domain. The proposed conditional entropy based AL method for cascade classification technique is compared with a marginal entropy based AL technique adopted in the context of single-date image classification. Experimental results obtained on two multispectral and multitemporal data sets show the effectiveness of the proposed technique.\",\"PeriodicalId\":254778,\"journal\":{\"name\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"volume\":\"184 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MULTI-TEMP.2011.6005047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于多时相遥感影像级联分类更新土地覆盖地图的主动学习(AL)方法。所提出的人工智能技术是基于选择未标记的样本,这些样本通过级联分类分配的标签具有最大的不确定性,并明确地利用了多时间图像之间的时间相关性。样本的不确定性由条件熵来评定,该条件熵是在时域上基于类-条件独立假设定义的。将本文提出的基于条件熵的人工智能方法用于级联分类技术与基于边缘熵的人工智能技术用于单日期图像分类进行了比较。在两个多光谱、多时间数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active-learning based cascade classification of multitemporal images for updating land-cover maps
This paper presents a novel active-learning (AL) technique in the context of the cascade classification of multitemporal remote-sensing images for updating land-cover maps. The proposed AL technique is based on the selection of unlabeled samples that have maximum uncertainty on their labels assigned by cascade classification, and explicitly exploits temporal correlation between multitemporal images. Uncertainty of samples is assessed by conditional entropy that is defined on the basis of class-conditional independence assumption in time domain. The proposed conditional entropy based AL method for cascade classification technique is compared with a marginal entropy based AL technique adopted in the context of single-date image classification. Experimental results obtained on two multispectral and multitemporal data sets show the effectiveness of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信