{"title":"关系的量子与经典查询复杂性","authors":"Alina Vasilieva","doi":"10.1109/ICNC.2011.6022357","DOIUrl":null,"url":null,"abstract":"This paper investigates the computability of mathematical relations in a quantum query model. The important task in complexity theory is to find examples with a large gap between classical and quantum algorithm complexity of the same computational problem. We present new results in quantum query algorithm design that allow achieving a large separation between classical and quantum query complexity of a specific relation. We demonstrate an example where quantum query algorithm for a finite relation needs more than two times fewer queries than the best possible classical analogue. We also show that relation can be extended to infinite family of relations with an input of general size N.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantum versus classical query complexity of relation\",\"authors\":\"Alina Vasilieva\",\"doi\":\"10.1109/ICNC.2011.6022357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the computability of mathematical relations in a quantum query model. The important task in complexity theory is to find examples with a large gap between classical and quantum algorithm complexity of the same computational problem. We present new results in quantum query algorithm design that allow achieving a large separation between classical and quantum query complexity of a specific relation. We demonstrate an example where quantum query algorithm for a finite relation needs more than two times fewer queries than the best possible classical analogue. We also show that relation can be extended to infinite family of relations with an input of general size N.\",\"PeriodicalId\":299503,\"journal\":{\"name\":\"2011 Seventh International Conference on Natural Computation\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum versus classical query complexity of relation
This paper investigates the computability of mathematical relations in a quantum query model. The important task in complexity theory is to find examples with a large gap between classical and quantum algorithm complexity of the same computational problem. We present new results in quantum query algorithm design that allow achieving a large separation between classical and quantum query complexity of a specific relation. We demonstrate an example where quantum query algorithm for a finite relation needs more than two times fewer queries than the best possible classical analogue. We also show that relation can be extended to infinite family of relations with an input of general size N.