硼合金化对等离子喷涂CuNiIn涂层微动磨损性能的影响

Yong Zhu, Xiao-Tao Luo, Yuan Ren, Chang Li
{"title":"硼合金化对等离子喷涂CuNiIn涂层微动磨损性能的影响","authors":"Yong Zhu, Xiao-Tao Luo, Yuan Ren, Chang Li","doi":"10.31399/asm.cp.itsc2023p0710","DOIUrl":null,"url":null,"abstract":"\n Atmospheric plasma sprayed (APS) CuNiIn coatings have been widely used for fretting wear protection in many important areas such as aircraft engines for decades. The oxides in CuNiIn coating prepared by APS hinder splat bonding formation and thus degrade the coating fretting performance. In this study, CuNiIn powders of different boron contents were designed to realize the self-oxide-cleaning effect for in-flight molten droplets and thus deposit the dense CuNiIn coating with high fretting performance. Scanning electron microscope was used to characterize the microstructure. The oxygen content in the coating was measured by the inert gas fusion technique. Fretting test was performed for three coatings under different loadings. The results show that CuNiIn2B and CuNiIn4B coatings presented the oxide content of 0.40wt% and 0.38wt%, which are lower than 1.6wt% of the CuNiIn coating. The oxygen content in the CuNiIn4B coating decreased with the increase of spray distance while the oxygen content in CuNiIn coating increased with the increase of the spray distance. Such results clearly reveal the boron in-situ deoxidizing effect of inflight molten droplets. As a result, the dense CuNiIn2B and CuNiIn4B coatings were deposited with oxide-free molten droplets. The test results showed that the fretting wear performance of B-alloyed CuNiIn coatings were increased by a factor over three comparing with conventional CuNiIn coating.","PeriodicalId":114755,"journal":{"name":"International Thermal Spray Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Boron Alloying on the Fretting Wear Performance of Plasma-Sprayed CuNiIn Coatings\",\"authors\":\"Yong Zhu, Xiao-Tao Luo, Yuan Ren, Chang Li\",\"doi\":\"10.31399/asm.cp.itsc2023p0710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Atmospheric plasma sprayed (APS) CuNiIn coatings have been widely used for fretting wear protection in many important areas such as aircraft engines for decades. The oxides in CuNiIn coating prepared by APS hinder splat bonding formation and thus degrade the coating fretting performance. In this study, CuNiIn powders of different boron contents were designed to realize the self-oxide-cleaning effect for in-flight molten droplets and thus deposit the dense CuNiIn coating with high fretting performance. Scanning electron microscope was used to characterize the microstructure. The oxygen content in the coating was measured by the inert gas fusion technique. Fretting test was performed for three coatings under different loadings. The results show that CuNiIn2B and CuNiIn4B coatings presented the oxide content of 0.40wt% and 0.38wt%, which are lower than 1.6wt% of the CuNiIn coating. The oxygen content in the CuNiIn4B coating decreased with the increase of spray distance while the oxygen content in CuNiIn coating increased with the increase of the spray distance. Such results clearly reveal the boron in-situ deoxidizing effect of inflight molten droplets. As a result, the dense CuNiIn2B and CuNiIn4B coatings were deposited with oxide-free molten droplets. The test results showed that the fretting wear performance of B-alloyed CuNiIn coatings were increased by a factor over three comparing with conventional CuNiIn coating.\",\"PeriodicalId\":114755,\"journal\":{\"name\":\"International Thermal Spray Conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Thermal Spray Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.itsc2023p0710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Thermal Spray Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.itsc2023p0710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大气等离子喷涂(APS) CuNiIn涂层已广泛应用于航空发动机等重要领域的微动磨损保护。APS制备的CuNiIn涂层中的氧化物阻碍了溅落键合的形成,从而降低了涂层的微动性能。本研究设计了不同硼含量的CuNiIn粉末,实现了对飞行熔滴的自氧化清洗效果,从而沉积了致密的具有高微动性能的CuNiIn涂层。采用扫描电镜对其微观结构进行表征。采用惰性气体熔合技术测定了涂层中的氧含量。对三种涂层在不同载荷下进行了微动试验。结果表明,CuNiIn2B和CuNiIn4B涂层的氧化物含量分别为0.40wt%和0.38wt%,均低于CuNiIn涂层的1.6wt%。CuNiIn4B涂层中的氧含量随喷涂距离的增加而降低,而CuNiIn涂层中的氧含量随喷涂距离的增加而增加。这些结果清楚地揭示了飞行熔滴对硼的原位脱氧作用。结果表明,致密的CuNiIn2B和CuNiIn4B涂层由无氧化物熔滴沉积而成。试验结果表明,b合金CuNiIn涂层的微动磨损性能比普通CuNiIn涂层提高了3倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Boron Alloying on the Fretting Wear Performance of Plasma-Sprayed CuNiIn Coatings
Atmospheric plasma sprayed (APS) CuNiIn coatings have been widely used for fretting wear protection in many important areas such as aircraft engines for decades. The oxides in CuNiIn coating prepared by APS hinder splat bonding formation and thus degrade the coating fretting performance. In this study, CuNiIn powders of different boron contents were designed to realize the self-oxide-cleaning effect for in-flight molten droplets and thus deposit the dense CuNiIn coating with high fretting performance. Scanning electron microscope was used to characterize the microstructure. The oxygen content in the coating was measured by the inert gas fusion technique. Fretting test was performed for three coatings under different loadings. The results show that CuNiIn2B and CuNiIn4B coatings presented the oxide content of 0.40wt% and 0.38wt%, which are lower than 1.6wt% of the CuNiIn coating. The oxygen content in the CuNiIn4B coating decreased with the increase of spray distance while the oxygen content in CuNiIn coating increased with the increase of the spray distance. Such results clearly reveal the boron in-situ deoxidizing effect of inflight molten droplets. As a result, the dense CuNiIn2B and CuNiIn4B coatings were deposited with oxide-free molten droplets. The test results showed that the fretting wear performance of B-alloyed CuNiIn coatings were increased by a factor over three comparing with conventional CuNiIn coating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信