基于自举法的高光谱图像解混改进

C. Fossati, S. Bourennane, A. Cailly
{"title":"基于自举法的高光谱图像解混改进","authors":"C. Fossati, S. Bourennane, A. Cailly","doi":"10.1109/EUVIP.2016.7764606","DOIUrl":null,"url":null,"abstract":"This paper presents an unmixing method for hyperspectral data containing small targets. Each pixel of the target represent the useful data embedded among a large number of background pixels. With recent technological developments of hyperspectral sensors, the spatial resolution increases, and it is possible to detect some small targets containing few pixels. We propose in this paper a new approach based on bootstrap resampling method adapted to the linear mixing model which leads to artificially increase the abundance of useful pixels corresponding to the small targets . Then, we use the non-negative matrix factorization (NMF) with these resampled data to estimate the spectra of the targets. The experimental results based on synthetic and real images demonstrate the efficiency of this new approach for the unmixing of smallscale data such as small objects in hyperspectral images.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unmixing improvement based on bootstrap for hyperspectral imagery\",\"authors\":\"C. Fossati, S. Bourennane, A. Cailly\",\"doi\":\"10.1109/EUVIP.2016.7764606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an unmixing method for hyperspectral data containing small targets. Each pixel of the target represent the useful data embedded among a large number of background pixels. With recent technological developments of hyperspectral sensors, the spatial resolution increases, and it is possible to detect some small targets containing few pixels. We propose in this paper a new approach based on bootstrap resampling method adapted to the linear mixing model which leads to artificially increase the abundance of useful pixels corresponding to the small targets . Then, we use the non-negative matrix factorization (NMF) with these resampled data to estimate the spectra of the targets. The experimental results based on synthetic and real images demonstrate the efficiency of this new approach for the unmixing of smallscale data such as small objects in hyperspectral images.\",\"PeriodicalId\":136980,\"journal\":{\"name\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2016.7764606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种包含小目标的高光谱数据的解混方法。目标的每个像素表示嵌入在大量背景像素中的有用数据。随着近年来高光谱传感器技术的发展,高光谱传感器的空间分辨率不断提高,可以探测到少量像素的小目标。本文提出了一种适用于线性混合模型的基于自举重采样的新方法,该方法可以人为地增加小目标对应的有用像素的丰度。然后,我们利用这些重采样数据的非负矩阵分解(NMF)来估计目标的光谱。基于合成图像和真实图像的实验结果表明,该方法对高光谱图像中小目标等小尺度数据的解混是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unmixing improvement based on bootstrap for hyperspectral imagery
This paper presents an unmixing method for hyperspectral data containing small targets. Each pixel of the target represent the useful data embedded among a large number of background pixels. With recent technological developments of hyperspectral sensors, the spatial resolution increases, and it is possible to detect some small targets containing few pixels. We propose in this paper a new approach based on bootstrap resampling method adapted to the linear mixing model which leads to artificially increase the abundance of useful pixels corresponding to the small targets . Then, we use the non-negative matrix factorization (NMF) with these resampled data to estimate the spectra of the targets. The experimental results based on synthetic and real images demonstrate the efficiency of this new approach for the unmixing of smallscale data such as small objects in hyperspectral images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信