用于P300拼写应用的主成分分析集成分类器

Amr S. Elsawy, S. Eldawlatly, M. Taher, G. Aly
{"title":"用于P300拼写应用的主成分分析集成分类器","authors":"Amr S. Elsawy, S. Eldawlatly, M. Taher, G. Aly","doi":"10.1109/ISPA.2013.6703782","DOIUrl":null,"url":null,"abstract":"Recent advances in developing Brain-Computer Interfaces (BCIs) have opened up a new realm for designing efficient systems that could enable disabled people to communicate. The P300 speller is one important BCI application that allows the selection of characters on a virtual keyboard by analyzing recorded electroencephalography (EEG) activity. In this work, we propose an ensemble classifier that uses Principal Component Analysis (PCA) features to identify evoked P300 signals from EEG recordings. We examine the performance of the proposed method, using different linear classifiers, on the datasets provided by the BCI competition III. Results demonstrate a classification accuracy of 91% using the proposed method. In addition, our results indicate a significant improvement in classification accuracy compared to traditional feature extraction and classification approaches. The proposed method results in low across-subjects variability compared to other methods with minimal parameter tuning required which could be useful in mobile platform P300 applications.","PeriodicalId":425029,"journal":{"name":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A principal component analysis ensemble classifier for P300 speller applications\",\"authors\":\"Amr S. Elsawy, S. Eldawlatly, M. Taher, G. Aly\",\"doi\":\"10.1109/ISPA.2013.6703782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in developing Brain-Computer Interfaces (BCIs) have opened up a new realm for designing efficient systems that could enable disabled people to communicate. The P300 speller is one important BCI application that allows the selection of characters on a virtual keyboard by analyzing recorded electroencephalography (EEG) activity. In this work, we propose an ensemble classifier that uses Principal Component Analysis (PCA) features to identify evoked P300 signals from EEG recordings. We examine the performance of the proposed method, using different linear classifiers, on the datasets provided by the BCI competition III. Results demonstrate a classification accuracy of 91% using the proposed method. In addition, our results indicate a significant improvement in classification accuracy compared to traditional feature extraction and classification approaches. The proposed method results in low across-subjects variability compared to other methods with minimal parameter tuning required which could be useful in mobile platform P300 applications.\",\"PeriodicalId\":425029,\"journal\":{\"name\":\"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2013.6703782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2013.6703782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

脑机接口(bci)的最新进展为设计高效的系统开辟了一个新的领域,使残疾人能够进行交流。P300拼写器是一个重要的脑机接口应用程序,它允许通过分析记录的脑电图(EEG)活动在虚拟键盘上选择字符。在这项工作中,我们提出了一个集成分类器,该分类器使用主成分分析(PCA)特征从EEG记录中识别诱发的P300信号。我们使用不同的线性分类器在BCI竞赛III提供的数据集上检验了所提出方法的性能。结果表明,该方法的分类准确率为91%。此外,我们的研究结果表明,与传统的特征提取和分类方法相比,分类精度有了显著提高。与其他需要最小参数调优的方法相比,所提出的方法具有较低的跨主题可变性,这可能在移动平台P300应用程序中有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A principal component analysis ensemble classifier for P300 speller applications
Recent advances in developing Brain-Computer Interfaces (BCIs) have opened up a new realm for designing efficient systems that could enable disabled people to communicate. The P300 speller is one important BCI application that allows the selection of characters on a virtual keyboard by analyzing recorded electroencephalography (EEG) activity. In this work, we propose an ensemble classifier that uses Principal Component Analysis (PCA) features to identify evoked P300 signals from EEG recordings. We examine the performance of the proposed method, using different linear classifiers, on the datasets provided by the BCI competition III. Results demonstrate a classification accuracy of 91% using the proposed method. In addition, our results indicate a significant improvement in classification accuracy compared to traditional feature extraction and classification approaches. The proposed method results in low across-subjects variability compared to other methods with minimal parameter tuning required which could be useful in mobile platform P300 applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信