基于最大A后验概率方法的语音增强

Xizhong Shen, Su Chenying
{"title":"基于最大A后验概率方法的语音增强","authors":"Xizhong Shen, Su Chenying","doi":"10.1109/ICDSP.2018.8631802","DOIUrl":null,"url":null,"abstract":"We examine spectral subtraction with both amplitude and phase spectra for improved speech enhancement performance by the method of maximum a posterior. Spectral subtraction is a very valid and direct denoising algorithm, but it has a vital problem, i.e., it may generate 'musical noise'. An adaptive harmonic model is utilized. Maximum a posterior is considered to derive the phase estimator, which is extra applied to amplitude spectral subtraction. Different from others, the extra parameters in our algorithm are considered as random variables, and the main extra parameters are amplitude and phase. The phase of the speech signal is assumed to have von Mises circular distribution, and the amplitude is to have normal distribution. The assumptions are applied to Bayesian theory, and we derived the update formulae of the parameters of the speech model, that is, phase estimator and amplitude estimator. Thus, we obtained the phase and amplitude of each harmonic. Simulation results show the further improvement of spectral subtraction.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speech Enhancement Exploiting Probabilistic Approach Using Maximum A Posterior\",\"authors\":\"Xizhong Shen, Su Chenying\",\"doi\":\"10.1109/ICDSP.2018.8631802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine spectral subtraction with both amplitude and phase spectra for improved speech enhancement performance by the method of maximum a posterior. Spectral subtraction is a very valid and direct denoising algorithm, but it has a vital problem, i.e., it may generate 'musical noise'. An adaptive harmonic model is utilized. Maximum a posterior is considered to derive the phase estimator, which is extra applied to amplitude spectral subtraction. Different from others, the extra parameters in our algorithm are considered as random variables, and the main extra parameters are amplitude and phase. The phase of the speech signal is assumed to have von Mises circular distribution, and the amplitude is to have normal distribution. The assumptions are applied to Bayesian theory, and we derived the update formulae of the parameters of the speech model, that is, phase estimator and amplitude estimator. Thus, we obtained the phase and amplitude of each harmonic. Simulation results show the further improvement of spectral subtraction.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过最大后验方法研究了振幅和相位谱的谱减法对语音增强性能的改善。谱减法是一种非常有效和直接的去噪算法,但它有一个重要的问题,即它可能产生“音乐噪声”。采用自适应谐波模型。考虑极大后验来推导相位估计量,并将其应用于振幅谱减法。与其他算法不同的是,我们的算法将额外参数视为随机变量,主要额外参数为振幅和相位。假设语音信号的相位服从von Mises圆形分布,幅度服从正态分布。将这些假设应用到贝叶斯理论中,推导出语音模型参数的更新公式,即相位估计量和幅度估计量。因此,我们得到了每个谐波的相位和振幅。仿真结果表明了谱减法的进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Enhancement Exploiting Probabilistic Approach Using Maximum A Posterior
We examine spectral subtraction with both amplitude and phase spectra for improved speech enhancement performance by the method of maximum a posterior. Spectral subtraction is a very valid and direct denoising algorithm, but it has a vital problem, i.e., it may generate 'musical noise'. An adaptive harmonic model is utilized. Maximum a posterior is considered to derive the phase estimator, which is extra applied to amplitude spectral subtraction. Different from others, the extra parameters in our algorithm are considered as random variables, and the main extra parameters are amplitude and phase. The phase of the speech signal is assumed to have von Mises circular distribution, and the amplitude is to have normal distribution. The assumptions are applied to Bayesian theory, and we derived the update formulae of the parameters of the speech model, that is, phase estimator and amplitude estimator. Thus, we obtained the phase and amplitude of each harmonic. Simulation results show the further improvement of spectral subtraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信