基于神经网络的船舶横摇运动时间序列预测

F. Peña, Marcos Miguez Gonzalez, V. Casás, R. Duro
{"title":"基于神经网络的船舶横摇运动时间序列预测","authors":"F. Peña, Marcos Miguez Gonzalez, V. Casás, R. Duro","doi":"10.1109/CIMSA.2011.6059920","DOIUrl":null,"url":null,"abstract":"A neural network based system has been applied for forecasting the large amplitude roll motions of a ship that appear during parametric roll resonance. Under these conditions, ship roll motion presents a highly nonlinear behavior and accurate predictions are difficult to achieve using classical mathematical modeling approaches. The results obtained present very good agreement to reality, leading to the possibility of applying the system as a base for a parametric roll warning system.","PeriodicalId":422972,"journal":{"name":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ship roll motion time series forecasting using neural networks\",\"authors\":\"F. Peña, Marcos Miguez Gonzalez, V. Casás, R. Duro\",\"doi\":\"10.1109/CIMSA.2011.6059920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural network based system has been applied for forecasting the large amplitude roll motions of a ship that appear during parametric roll resonance. Under these conditions, ship roll motion presents a highly nonlinear behavior and accurate predictions are difficult to achieve using classical mathematical modeling approaches. The results obtained present very good agreement to reality, leading to the possibility of applying the system as a base for a parametric roll warning system.\",\"PeriodicalId\":422972,\"journal\":{\"name\":\"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2011.6059920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2011.6059920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

将基于神经网络的系统应用于船舶参数横摇共振过程中出现的大振幅横摇运动的预测。在这种情况下,船舶横摇运动表现出高度非线性,用经典的数学建模方法很难得到准确的预测。所得结果与实际情况吻合较好,可作为参数化侧倾预警系统的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ship roll motion time series forecasting using neural networks
A neural network based system has been applied for forecasting the large amplitude roll motions of a ship that appear during parametric roll resonance. Under these conditions, ship roll motion presents a highly nonlinear behavior and accurate predictions are difficult to achieve using classical mathematical modeling approaches. The results obtained present very good agreement to reality, leading to the possibility of applying the system as a base for a parametric roll warning system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信