基于动态神经网络的非线性对象状态估计

A. K. Deb, D. Guha
{"title":"基于动态神经网络的非线性对象状态估计","authors":"A. K. Deb, D. Guha","doi":"10.1109/CICA.2014.7013238","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to design a dynamic neural network that can effectively estimate all the states of single input non linear plants. Lyapunov's stability theory along with solution of full form Ricatti equation is used to guarantee that the tracking errors are uniformly bounded. No a priori knowledge on the bounds of weights and errors are required. The nonlinear plant and the dynamic neural network models have been simulated by the same input to illustrate the validity of theoretical results.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of states of a nonlinear plant using dynamic neural network\",\"authors\":\"A. K. Deb, D. Guha\",\"doi\":\"10.1109/CICA.2014.7013238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to design a dynamic neural network that can effectively estimate all the states of single input non linear plants. Lyapunov's stability theory along with solution of full form Ricatti equation is used to guarantee that the tracking errors are uniformly bounded. No a priori knowledge on the bounds of weights and errors are required. The nonlinear plant and the dynamic neural network models have been simulated by the same input to illustrate the validity of theoretical results.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是设计一种能够有效估计单输入非线性对象的所有状态的动态神经网络。利用Lyapunov稳定性理论和全形式Ricatti方程的解,保证了跟踪误差是一致有界的。不需要关于权重和误差边界的先验知识。在相同输入条件下,对非线性对象和动态神经网络模型进行了仿真,验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of states of a nonlinear plant using dynamic neural network
The purpose of this paper is to design a dynamic neural network that can effectively estimate all the states of single input non linear plants. Lyapunov's stability theory along with solution of full form Ricatti equation is used to guarantee that the tracking errors are uniformly bounded. No a priori knowledge on the bounds of weights and errors are required. The nonlinear plant and the dynamic neural network models have been simulated by the same input to illustrate the validity of theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信