用准似然比检验GARCH效应

Richard Luger
{"title":"用准似然比检验GARCH效应","authors":"Richard Luger","doi":"10.21314/JOR.2014.286","DOIUrl":null,"url":null,"abstract":"A procedure is developed to test whether conditional variances are constant over time in the context of generalized autoregressive conditional heteroscedasticity (GARCH) models with possible GARCH-in-mean effects. The approach is based on the quasilikelihood function, leaving the true distribution of model disturbances parametrically unspecified. The presence of possible nuisance parameters in the conditional mean is dealt with by using a pivotal bound and Monte Carlo resampling techniques to obtain a level-exact test procedure. Simulation experiments reveal that the permutation-based, quasilikelihood ratio test has very attractive power properties in comparison with omnibus Lagrange multiplier tests. An empirical application of the new procedure finds overwhelming evidence of GARCH effects in Fama-French portfolio returns, even when conditioning on the market risk factor.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Testing for GARCH Effects with Quasilikelihood Ratios\",\"authors\":\"Richard Luger\",\"doi\":\"10.21314/JOR.2014.286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A procedure is developed to test whether conditional variances are constant over time in the context of generalized autoregressive conditional heteroscedasticity (GARCH) models with possible GARCH-in-mean effects. The approach is based on the quasilikelihood function, leaving the true distribution of model disturbances parametrically unspecified. The presence of possible nuisance parameters in the conditional mean is dealt with by using a pivotal bound and Monte Carlo resampling techniques to obtain a level-exact test procedure. Simulation experiments reveal that the permutation-based, quasilikelihood ratio test has very attractive power properties in comparison with omnibus Lagrange multiplier tests. An empirical application of the new procedure finds overwhelming evidence of GARCH effects in Fama-French portfolio returns, even when conditioning on the market risk factor.\",\"PeriodicalId\":425229,\"journal\":{\"name\":\"ERN: Hypothesis Testing (Topic)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Hypothesis Testing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21314/JOR.2014.286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JOR.2014.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文开发了一种程序来检验在可能具有GARCH-in-mean效应的广义自回归条件异方差(GARCH)模型中条件方差是否随时间不变。该方法基于准似然函数,使模型扰动的真实分布参数不确定。通过使用关键界和蒙特卡罗重采样技术来处理条件均值中可能存在的干扰参数,以获得水平精确的检验过程。仿真实验表明,与综合拉格朗日乘子测试相比,基于排列的准似然比测试具有非常吸引人的功率特性。新程序的实证应用发现了Fama-French投资组合收益中GARCH效应的压倒性证据,即使在市场风险因素的条件下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing for GARCH Effects with Quasilikelihood Ratios
A procedure is developed to test whether conditional variances are constant over time in the context of generalized autoregressive conditional heteroscedasticity (GARCH) models with possible GARCH-in-mean effects. The approach is based on the quasilikelihood function, leaving the true distribution of model disturbances parametrically unspecified. The presence of possible nuisance parameters in the conditional mean is dealt with by using a pivotal bound and Monte Carlo resampling techniques to obtain a level-exact test procedure. Simulation experiments reveal that the permutation-based, quasilikelihood ratio test has very attractive power properties in comparison with omnibus Lagrange multiplier tests. An empirical application of the new procedure finds overwhelming evidence of GARCH effects in Fama-French portfolio returns, even when conditioning on the market risk factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信