利用机器学习预测登革热爆发和先天性梅毒诊断

R. P. Aleixo
{"title":"利用机器学习预测登革热爆发和先天性梅毒诊断","authors":"R. P. Aleixo","doi":"10.11606/d.45.2022.tde-26012023-200820","DOIUrl":null,"url":null,"abstract":"A sífilis congênita e a dengue são duas doenças que causam impactos significativos no Brasil e em outros países do Hemisfério Sul, afetando a saúde de milhões de pessoas. A sífilis é uma infecção sexualmente transmissível (IST) que ao ser transmitida em crianças durante o período da gestação, é chamada de sífilis congênita. Já a dengue é uma doença viral transmitida pelos mosquitos Aedes Aegypti e Aedes Albopictus. Nesta dissertação, desenvolvemos aplicações inovadoras de modelos de aprendizado de máquina para essas doenças. O primeiro deles estima a probabilidade de uma criança nascer com sífilis. O segundo prevê surtos de dengue com base em dados sociodemográficos, climáticos, série histórica de casos, número de unidades de saúde, índice de mensuração de mosquitos e séries históricas de zika e chikungunya. No caso da sífilis congênita, avaliamos os modelos pela métrica AUC (Area Under Curve) e o resultado foi bom mas não excelente, i.e., 0.68 para a predição de casos positivos, obtidos pelos modelos LightGBM e XGBoost. No que se refere à dengue, o modelo Catboost obteve resultados muito bons, identificando 75% dos surtos com três meses de antecedência. Parte significativa deste trabalho foi investida na explicabilidade das predições de dengue, o que torna o modelo um importante aliado para a desenho de políticas públicas de saúde.","PeriodicalId":354386,"journal":{"name":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predição de surtos de dengue e diagnóstico de sífilis congênita utilizando aprendizado de máquina\",\"authors\":\"R. P. Aleixo\",\"doi\":\"10.11606/d.45.2022.tde-26012023-200820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sífilis congênita e a dengue são duas doenças que causam impactos significativos no Brasil e em outros países do Hemisfério Sul, afetando a saúde de milhões de pessoas. A sífilis é uma infecção sexualmente transmissível (IST) que ao ser transmitida em crianças durante o período da gestação, é chamada de sífilis congênita. Já a dengue é uma doença viral transmitida pelos mosquitos Aedes Aegypti e Aedes Albopictus. Nesta dissertação, desenvolvemos aplicações inovadoras de modelos de aprendizado de máquina para essas doenças. O primeiro deles estima a probabilidade de uma criança nascer com sífilis. O segundo prevê surtos de dengue com base em dados sociodemográficos, climáticos, série histórica de casos, número de unidades de saúde, índice de mensuração de mosquitos e séries históricas de zika e chikungunya. No caso da sífilis congênita, avaliamos os modelos pela métrica AUC (Area Under Curve) e o resultado foi bom mas não excelente, i.e., 0.68 para a predição de casos positivos, obtidos pelos modelos LightGBM e XGBoost. No que se refere à dengue, o modelo Catboost obteve resultados muito bons, identificando 75% dos surtos com três meses de antecedência. Parte significativa deste trabalho foi investida na explicabilidade das predições de dengue, o que torna o modelo um importante aliado para a desenho de políticas públicas de saúde.\",\"PeriodicalId\":354386,\"journal\":{\"name\":\"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11606/d.45.2022.tde-26012023-200820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11606/d.45.2022.tde-26012023-200820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先天性梅毒和登革热是在巴西和南半球其他国家造成重大影响的两种疾病,影响数百万人的健康。梅毒是一种性传播感染(sti),在儿童怀孕期间传播,被称为先天性梅毒。登革热是一种由埃及伊蚊和白纹伊蚊传播的病毒性疾病。在本论文中,我们开发了机器学习模型在这些疾病中的创新应用。第一个估计孩子出生时患梅毒的概率。第二种预测基于社会人口学、气候数据、历史病例序列、卫生单位数量、蚊子指数以及寨卡病毒和基孔肯雅热的历史序列预测登革热爆发。对于先天性梅毒,我们使用AUC(曲线下面积)度量来评估模型,结果很好,但不是很好,即LightGBM和XGBoost模型得到的阳性病例预测为0.68。在登革热方面,Catboost模型取得了非常好的结果,提前3个月识别了75%的疫情。这项工作的重要部分投资于登革热预测的解释,这使该模型成为公共卫生政策设计的重要盟友。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predição de surtos de dengue e diagnóstico de sífilis congênita utilizando aprendizado de máquina
A sífilis congênita e a dengue são duas doenças que causam impactos significativos no Brasil e em outros países do Hemisfério Sul, afetando a saúde de milhões de pessoas. A sífilis é uma infecção sexualmente transmissível (IST) que ao ser transmitida em crianças durante o período da gestação, é chamada de sífilis congênita. Já a dengue é uma doença viral transmitida pelos mosquitos Aedes Aegypti e Aedes Albopictus. Nesta dissertação, desenvolvemos aplicações inovadoras de modelos de aprendizado de máquina para essas doenças. O primeiro deles estima a probabilidade de uma criança nascer com sífilis. O segundo prevê surtos de dengue com base em dados sociodemográficos, climáticos, série histórica de casos, número de unidades de saúde, índice de mensuração de mosquitos e séries históricas de zika e chikungunya. No caso da sífilis congênita, avaliamos os modelos pela métrica AUC (Area Under Curve) e o resultado foi bom mas não excelente, i.e., 0.68 para a predição de casos positivos, obtidos pelos modelos LightGBM e XGBoost. No que se refere à dengue, o modelo Catboost obteve resultados muito bons, identificando 75% dos surtos com três meses de antecedência. Parte significativa deste trabalho foi investida na explicabilidade das predições de dengue, o que torna o modelo um importante aliado para a desenho de políticas públicas de saúde.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信