大数据文献中企业架构管理需求分类

Stefan Kehrer, Dierk Jugel, A. Zimmermann
{"title":"大数据文献中企业架构管理需求分类","authors":"Stefan Kehrer, Dierk Jugel, A. Zimmermann","doi":"10.1109/EDOCW.2016.7584352","DOIUrl":null,"url":null,"abstract":"Organizations identified the opportunities of big data analytics to support the business with problem-specific insights through the exploitation of generated data. Socio-technical solutions are developed in big data projects to reach competitive advantage. Although these projects are aligned to specific business needs, common architectural challenges are not addressed in a comprehensive manner. Enterprise architecture management is a holistic approach to tackle complex business and IT architectures. The transformation of an organization's EA is influenced by big data transformation processes and their data-driven approach on all layers. In this paper, we review big data literature to analyze which requirements for the EA management discipline are proposed. Based on a systematic literature identification, conceptual categories of requirements for EA management are elicited utilizing an inductive category formation. These conceptual categories of requirements constitute a category system that facilitates a new perspective on EA management and fosters the innovation-driven evolution of the EA management discipline.","PeriodicalId":287808,"journal":{"name":"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Categorizing Requirements for Enterprise Architecture Management in Big Data Literature\",\"authors\":\"Stefan Kehrer, Dierk Jugel, A. Zimmermann\",\"doi\":\"10.1109/EDOCW.2016.7584352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organizations identified the opportunities of big data analytics to support the business with problem-specific insights through the exploitation of generated data. Socio-technical solutions are developed in big data projects to reach competitive advantage. Although these projects are aligned to specific business needs, common architectural challenges are not addressed in a comprehensive manner. Enterprise architecture management is a holistic approach to tackle complex business and IT architectures. The transformation of an organization's EA is influenced by big data transformation processes and their data-driven approach on all layers. In this paper, we review big data literature to analyze which requirements for the EA management discipline are proposed. Based on a systematic literature identification, conceptual categories of requirements for EA management are elicited utilizing an inductive category formation. These conceptual categories of requirements constitute a category system that facilitates a new perspective on EA management and fosters the innovation-driven evolution of the EA management discipline.\",\"PeriodicalId\":287808,\"journal\":{\"name\":\"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDOCW.2016.7584352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDOCW.2016.7584352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

组织发现了大数据分析的机会,通过利用生成的数据,以特定问题的洞察力来支持业务。在大数据项目中开发社会技术解决方案以获得竞争优势。尽管这些项目与特定的业务需求保持一致,但没有以全面的方式解决共同的体系结构挑战。企业架构管理是处理复杂业务和IT架构的整体方法。组织的EA转型受到大数据转型过程及其在所有层面上的数据驱动方法的影响。在本文中,我们回顾了大数据文献,以分析对EA管理学科提出了哪些需求。在系统的文献识别的基础上,利用归纳的类别形式引出了EA管理需求的概念类别。这些需求的概念性类别构成了一个类别系统,它促进了EA管理的新视角,并促进了EA管理规程的创新驱动演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorizing Requirements for Enterprise Architecture Management in Big Data Literature
Organizations identified the opportunities of big data analytics to support the business with problem-specific insights through the exploitation of generated data. Socio-technical solutions are developed in big data projects to reach competitive advantage. Although these projects are aligned to specific business needs, common architectural challenges are not addressed in a comprehensive manner. Enterprise architecture management is a holistic approach to tackle complex business and IT architectures. The transformation of an organization's EA is influenced by big data transformation processes and their data-driven approach on all layers. In this paper, we review big data literature to analyze which requirements for the EA management discipline are proposed. Based on a systematic literature identification, conceptual categories of requirements for EA management are elicited utilizing an inductive category formation. These conceptual categories of requirements constitute a category system that facilitates a new perspective on EA management and fosters the innovation-driven evolution of the EA management discipline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信