一种高效的云数据多维元数据索引与搜索系统

Yang Yu, Yongqing Zhu, W. Ng, J. Samsudin
{"title":"一种高效的云数据多维元数据索引与搜索系统","authors":"Yang Yu, Yongqing Zhu, W. Ng, J. Samsudin","doi":"10.1109/CloudCom.2014.88","DOIUrl":null,"url":null,"abstract":"The ever increasing amounts of digital data being stored in public and private clouds are challenging users to access and manage the data. With the corresponding storage system reaches Petabyte-scale, or even Exabyte-scale, metadata access will become a severe performance bottleneck. Hence, this paper proposes an efficient multi-dimensional metadata index and search solution for cloud data. By proposing some new mechanism for K-D-B tree based index/search and implementing index partitioning technique, our system can achieve optimized performance in terms of memory utilization and search speed. Experiments show that our system performs much better as compared with existing solutions. In addition, our system can safely scale out in a distributed manner with guaranteed performance.","PeriodicalId":249306,"journal":{"name":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Efficient Multidimension Metadata Index and Search System for Cloud Data\",\"authors\":\"Yang Yu, Yongqing Zhu, W. Ng, J. Samsudin\",\"doi\":\"10.1109/CloudCom.2014.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever increasing amounts of digital data being stored in public and private clouds are challenging users to access and manage the data. With the corresponding storage system reaches Petabyte-scale, or even Exabyte-scale, metadata access will become a severe performance bottleneck. Hence, this paper proposes an efficient multi-dimensional metadata index and search solution for cloud data. By proposing some new mechanism for K-D-B tree based index/search and implementing index partitioning technique, our system can achieve optimized performance in terms of memory utilization and search speed. Experiments show that our system performs much better as compared with existing solutions. In addition, our system can safely scale out in a distributed manner with guaranteed performance.\",\"PeriodicalId\":249306,\"journal\":{\"name\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2014.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2014.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

存储在公共云和私有云中的数字数据量不断增加,这给用户访问和管理数据带来了挑战。当存储系统达到pb级甚至exabyte级时,元数据访问将成为严重的性能瓶颈。为此,本文提出了一种高效的多维元数据索引和云数据搜索解决方案。通过提出一些新的基于K-D-B树的索引/搜索机制并实现索引分区技术,系统在内存利用率和搜索速度方面达到了优化的性能。实验表明,与现有的解决方案相比,我们的系统性能要好得多。此外,我们的系统可以在保证性能的情况下安全地以分布式方式向外扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Multidimension Metadata Index and Search System for Cloud Data
The ever increasing amounts of digital data being stored in public and private clouds are challenging users to access and manage the data. With the corresponding storage system reaches Petabyte-scale, or even Exabyte-scale, metadata access will become a severe performance bottleneck. Hence, this paper proposes an efficient multi-dimensional metadata index and search solution for cloud data. By proposing some new mechanism for K-D-B tree based index/search and implementing index partitioning technique, our system can achieve optimized performance in terms of memory utilization and search speed. Experiments show that our system performs much better as compared with existing solutions. In addition, our system can safely scale out in a distributed manner with guaranteed performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信