{"title":"聚焦爬行和信息提取的本体学习","authors":"H. Luong, Susan Gauch, Qiang Wang","doi":"10.1109/KSE.2009.28","DOIUrl":null,"url":null,"abstract":"Ontology learning aims to facilitate the construction of ontologies by decreasing the amount of effort required to produce an ontology for a new domain. However, there are few studies that attempt to automate the entire ontology learning process from the collection of domain-specific literature, to text mining to build new ontologies or enrich existing ones. In this paper, we present a complete framework for ontology learning that enables us to retrieve documents from the Web using focused crawling, and then use a SVM (Support Vector Machine) classifier to identify domain-specific documents and perform text mining in order to extract useful information for the ontology enrichment process. We have carried out several experiments on components of this framework in a biological domain, amphibian morphology. This paper reports on the overall system architecture and our initial experiments on information extraction using text mining techniques to enrich the domain ontology.","PeriodicalId":347175,"journal":{"name":"2009 International Conference on Knowledge and Systems Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Ontology Learning Through Focused Crawling and Information Extraction\",\"authors\":\"H. Luong, Susan Gauch, Qiang Wang\",\"doi\":\"10.1109/KSE.2009.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology learning aims to facilitate the construction of ontologies by decreasing the amount of effort required to produce an ontology for a new domain. However, there are few studies that attempt to automate the entire ontology learning process from the collection of domain-specific literature, to text mining to build new ontologies or enrich existing ones. In this paper, we present a complete framework for ontology learning that enables us to retrieve documents from the Web using focused crawling, and then use a SVM (Support Vector Machine) classifier to identify domain-specific documents and perform text mining in order to extract useful information for the ontology enrichment process. We have carried out several experiments on components of this framework in a biological domain, amphibian morphology. This paper reports on the overall system architecture and our initial experiments on information extraction using text mining techniques to enrich the domain ontology.\",\"PeriodicalId\":347175,\"journal\":{\"name\":\"2009 International Conference on Knowledge and Systems Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2009.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2009.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ontology Learning Through Focused Crawling and Information Extraction
Ontology learning aims to facilitate the construction of ontologies by decreasing the amount of effort required to produce an ontology for a new domain. However, there are few studies that attempt to automate the entire ontology learning process from the collection of domain-specific literature, to text mining to build new ontologies or enrich existing ones. In this paper, we present a complete framework for ontology learning that enables us to retrieve documents from the Web using focused crawling, and then use a SVM (Support Vector Machine) classifier to identify domain-specific documents and perform text mining in order to extract useful information for the ontology enrichment process. We have carried out several experiments on components of this framework in a biological domain, amphibian morphology. This paper reports on the overall system architecture and our initial experiments on information extraction using text mining techniques to enrich the domain ontology.