基于拉格朗日松弛和策略展开的多任务传感器资源平衡

M. Schöpe, H. Driessen, A. Yarovoy
{"title":"基于拉格朗日松弛和策略展开的多任务传感器资源平衡","authors":"M. Schöpe, H. Driessen, A. Yarovoy","doi":"10.23919/FUSION45008.2020.9190546","DOIUrl":null,"url":null,"abstract":"The sensor resource management problem in a multi-object tracking scenario is considered. In order to solve it, a dynamic budget balancing algorithm is proposed which models the different sensor tasks as partially observable Markov decision processes. Those are being solved by applying a combination of Lagrangian relaxation and policy rollout. The algorithm converges to a solution which is close to the optimal steady-state solution. This is shown through simulations of a two-dimensional tracking scenario. Moreover, it is demonstrated how the algorithm allocates the sensor time budgets dynamically to a changing environment and takes predictions of the future situation into account.","PeriodicalId":419881,"journal":{"name":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Task Sensor Resource Balancing Using Lagrangian Relaxation and Policy Rollout\",\"authors\":\"M. Schöpe, H. Driessen, A. Yarovoy\",\"doi\":\"10.23919/FUSION45008.2020.9190546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sensor resource management problem in a multi-object tracking scenario is considered. In order to solve it, a dynamic budget balancing algorithm is proposed which models the different sensor tasks as partially observable Markov decision processes. Those are being solved by applying a combination of Lagrangian relaxation and policy rollout. The algorithm converges to a solution which is close to the optimal steady-state solution. This is shown through simulations of a two-dimensional tracking scenario. Moreover, it is demonstrated how the algorithm allocates the sensor time budgets dynamically to a changing environment and takes predictions of the future situation into account.\",\"PeriodicalId\":419881,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Information Fusion (FUSION)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/FUSION45008.2020.9190546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FUSION45008.2020.9190546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了多目标跟踪场景下的传感器资源管理问题。为了解决这一问题,提出了一种动态预算平衡算法,该算法将不同的传感器任务建模为部分可观察马尔可夫决策过程。这些问题正在通过拉格朗日放松和政策推出相结合的方式得到解决。该算法收敛到一个接近最优稳态解的解。这是通过二维跟踪场景的模拟显示的。此外,还演示了该算法如何根据不断变化的环境动态分配传感器时间预算,并考虑对未来情况的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Task Sensor Resource Balancing Using Lagrangian Relaxation and Policy Rollout
The sensor resource management problem in a multi-object tracking scenario is considered. In order to solve it, a dynamic budget balancing algorithm is proposed which models the different sensor tasks as partially observable Markov decision processes. Those are being solved by applying a combination of Lagrangian relaxation and policy rollout. The algorithm converges to a solution which is close to the optimal steady-state solution. This is shown through simulations of a two-dimensional tracking scenario. Moreover, it is demonstrated how the algorithm allocates the sensor time budgets dynamically to a changing environment and takes predictions of the future situation into account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信