基于间隔打包方法的云数据中心实时虚拟机能效分配

S. Jason
{"title":"基于间隔打包方法的云数据中心实时虚拟机能效分配","authors":"S. Jason","doi":"10.14738/tmlai.106.13419","DOIUrl":null,"url":null,"abstract":"The reduction of power consumption, which can lower the operation costs of Cloud providers, lengthen the useful life of a machine, as well as lessen the environmental effect caused by power consumption, is one of the critical concerns for large-scale Cloud applications. To satisfy the needs of various clients, Virtual Machines (VMs) as resources (Infrastructure as a Service (IaaS)) can be dynamically allocated in cloud data centers. In this research, we study the energy-efficient scheduling of real-time VMs by taking set processing intervals into account, with the providers' goal of lowering power consumption. Finding the best solutions is an NP-complete problem when virtual machines (VMs) share arbitrary amounts of a physical machine's (PM) total capacity, as demonstrated in numerous open-source resources. Our strategy treats the issue as a modified interval partitioning problem and takes into account configurations with dividable capacities to make the problem formulation easier and assist save energy. There are presented both exact and approximate solutions. The proposed systems consume 8–30% less power than the existing algorithms, according to simulation data.","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Virtual Machine Energy-Efficient Allocation in Cloud Data Centers Using Interval-packing Methods\",\"authors\":\"S. Jason\",\"doi\":\"10.14738/tmlai.106.13419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reduction of power consumption, which can lower the operation costs of Cloud providers, lengthen the useful life of a machine, as well as lessen the environmental effect caused by power consumption, is one of the critical concerns for large-scale Cloud applications. To satisfy the needs of various clients, Virtual Machines (VMs) as resources (Infrastructure as a Service (IaaS)) can be dynamically allocated in cloud data centers. In this research, we study the energy-efficient scheduling of real-time VMs by taking set processing intervals into account, with the providers' goal of lowering power consumption. Finding the best solutions is an NP-complete problem when virtual machines (VMs) share arbitrary amounts of a physical machine's (PM) total capacity, as demonstrated in numerous open-source resources. Our strategy treats the issue as a modified interval partitioning problem and takes into account configurations with dividable capacities to make the problem formulation easier and assist save energy. There are presented both exact and approximate solutions. The proposed systems consume 8–30% less power than the existing algorithms, according to simulation data.\",\"PeriodicalId\":119801,\"journal\":{\"name\":\"Transactions on Machine Learning and Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Machine Learning and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14738/tmlai.106.13419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tmlai.106.13419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

降低功耗可以降低云提供商的运营成本,延长机器的使用寿命,并减少功耗造成的环境影响,这是大规模云应用程序的关键问题之一。为了满足不同客户端的需求,可以在云数据中心内动态分配虚拟机资源(IaaS)。在本研究中,我们通过考虑设定的处理间隔来研究实时虚拟机的节能调度,并以降低功耗为目标。当虚拟机(vm)共享任意数量的物理机(PM)总容量时,找到最佳解决方案是一个np完全问题,许多开源资源都证明了这一点。我们的策略将该问题视为一个改进的区间划分问题,并考虑了具有可划分容量的配置,从而使问题的表述更容易,并有助于节省能源。给出了精确解和近似解。根据仿真数据,该系统的功耗比现有算法低8-30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Virtual Machine Energy-Efficient Allocation in Cloud Data Centers Using Interval-packing Methods
The reduction of power consumption, which can lower the operation costs of Cloud providers, lengthen the useful life of a machine, as well as lessen the environmental effect caused by power consumption, is one of the critical concerns for large-scale Cloud applications. To satisfy the needs of various clients, Virtual Machines (VMs) as resources (Infrastructure as a Service (IaaS)) can be dynamically allocated in cloud data centers. In this research, we study the energy-efficient scheduling of real-time VMs by taking set processing intervals into account, with the providers' goal of lowering power consumption. Finding the best solutions is an NP-complete problem when virtual machines (VMs) share arbitrary amounts of a physical machine's (PM) total capacity, as demonstrated in numerous open-source resources. Our strategy treats the issue as a modified interval partitioning problem and takes into account configurations with dividable capacities to make the problem formulation easier and assist save energy. There are presented both exact and approximate solutions. The proposed systems consume 8–30% less power than the existing algorithms, according to simulation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信