探索过程中分析物源的可视化表示方法

Aline Menin, R. Cava, C. Freitas, O. Corby, M. Winckler
{"title":"探索过程中分析物源的可视化表示方法","authors":"Aline Menin, R. Cava, C. Freitas, O. Corby, M. Winckler","doi":"10.1109/IV53921.2021.00014","DOIUrl":null,"url":null,"abstract":"Visualization techniques are useful tools to explore data by enabling the discovery of meaningful patterns and causal relationships. The discovery process is often exploratory and requires multiple views to support analyzing different or complementary perspectives to the data. In this context, analytic provenance shows great potential to understand users’ reasoning process through the study of their interactions on multiple view systems. In this paper, we present an approach based on the concept of chained views to support the incremental exploration of large, multidimensional datasets. Our goal is to provide visual representation of provenance information to enable users to retrace their analytical actions and to discover alternative exploratory paths without loosing information on previous analyses. We demonstrate that our implementation of the approach, MGExplorer (Multidimensional Graph Explorer), allows users to explore different perspectives to a dataset by modifying the input graph topology, choosing visualization techniques, arranging the visualization space in meaningful ways to the ongoing analysis and retracing their analytical actions. MGExplorer combines multiple visualization techniques and visual querying while representing provenance information as segments connecting views, which each supports selection operations that help define subsets of the current dataset to be explored by a different view. We demonstrate the usage of the tool through a study case where we explore co-authorship data. We assess the approach through performance metrics, temporal ordering of tasks, number of physical actions, and amount of information to be recalled inbetween actions applied to the chosen visual exploration scenarios using chained views.","PeriodicalId":380260,"journal":{"name":"2021 25th International Conference Information Visualisation (IV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards a Visual Approach for Representing Analytical Provenance in Exploration Processes\",\"authors\":\"Aline Menin, R. Cava, C. Freitas, O. Corby, M. Winckler\",\"doi\":\"10.1109/IV53921.2021.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualization techniques are useful tools to explore data by enabling the discovery of meaningful patterns and causal relationships. The discovery process is often exploratory and requires multiple views to support analyzing different or complementary perspectives to the data. In this context, analytic provenance shows great potential to understand users’ reasoning process through the study of their interactions on multiple view systems. In this paper, we present an approach based on the concept of chained views to support the incremental exploration of large, multidimensional datasets. Our goal is to provide visual representation of provenance information to enable users to retrace their analytical actions and to discover alternative exploratory paths without loosing information on previous analyses. We demonstrate that our implementation of the approach, MGExplorer (Multidimensional Graph Explorer), allows users to explore different perspectives to a dataset by modifying the input graph topology, choosing visualization techniques, arranging the visualization space in meaningful ways to the ongoing analysis and retracing their analytical actions. MGExplorer combines multiple visualization techniques and visual querying while representing provenance information as segments connecting views, which each supports selection operations that help define subsets of the current dataset to be explored by a different view. We demonstrate the usage of the tool through a study case where we explore co-authorship data. We assess the approach through performance metrics, temporal ordering of tasks, number of physical actions, and amount of information to be recalled inbetween actions applied to the chosen visual exploration scenarios using chained views.\",\"PeriodicalId\":380260,\"journal\":{\"name\":\"2021 25th International Conference Information Visualisation (IV)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 25th International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV53921.2021.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV53921.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

可视化技术是通过发现有意义的模式和因果关系来探索数据的有用工具。发现过程通常是探索性的,需要多个视图来支持分析数据的不同或互补视角。在这种情况下,分析来源显示出通过研究用户在多个视图系统上的交互来理解用户推理过程的巨大潜力。在本文中,我们提出了一种基于链接视图概念的方法,以支持对大型多维数据集的增量探索。我们的目标是提供来源信息的可视化表示,使用户能够回溯他们的分析行为,并在不丢失先前分析信息的情况下发现可选择的探索路径。我们证明了我们的方法MGExplorer(多维图形资源管理器)的实现允许用户通过修改输入图拓扑、选择可视化技术、以有意义的方式安排可视化空间以进行分析和回溯他们的分析操作来探索数据集的不同视角。MGExplorer结合了多种可视化技术和可视化查询,同时将出处信息表示为连接视图的段,每个视图都支持选择操作,帮助定义当前数据集的子集,以便由不同的视图进行探索。我们通过一个研究案例来演示该工具的使用,在这个案例中,我们探索了共同作者的数据。我们通过性能指标、任务的时间顺序、物理动作的数量以及在使用链式视图选择的视觉探索场景之间应用的动作之间要回忆的信息量来评估该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Visual Approach for Representing Analytical Provenance in Exploration Processes
Visualization techniques are useful tools to explore data by enabling the discovery of meaningful patterns and causal relationships. The discovery process is often exploratory and requires multiple views to support analyzing different or complementary perspectives to the data. In this context, analytic provenance shows great potential to understand users’ reasoning process through the study of their interactions on multiple view systems. In this paper, we present an approach based on the concept of chained views to support the incremental exploration of large, multidimensional datasets. Our goal is to provide visual representation of provenance information to enable users to retrace their analytical actions and to discover alternative exploratory paths without loosing information on previous analyses. We demonstrate that our implementation of the approach, MGExplorer (Multidimensional Graph Explorer), allows users to explore different perspectives to a dataset by modifying the input graph topology, choosing visualization techniques, arranging the visualization space in meaningful ways to the ongoing analysis and retracing their analytical actions. MGExplorer combines multiple visualization techniques and visual querying while representing provenance information as segments connecting views, which each supports selection operations that help define subsets of the current dataset to be explored by a different view. We demonstrate the usage of the tool through a study case where we explore co-authorship data. We assess the approach through performance metrics, temporal ordering of tasks, number of physical actions, and amount of information to be recalled inbetween actions applied to the chosen visual exploration scenarios using chained views.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信