浅谈蒸馏超参数对联邦知识蒸馏的影响

Norah Alballa, M. Canini
{"title":"浅谈蒸馏超参数对联邦知识蒸馏的影响","authors":"Norah Alballa, M. Canini","doi":"10.1145/3578356.3592590","DOIUrl":null,"url":null,"abstract":"Knowledge distillation has been known as a useful way for model compression. It has been recently adopted in the distributed training domain, such as federated learning, as a way to transfer knowledge between already pre-trained models. Knowledge distillation in distributed settings promises advantages, including significantly reducing the communication overhead and allowing heterogeneous model architectures. However, distillation is still not well studied and understood in such settings, which hinders the possible gains. We bridge this gap by performing an experimental analysis of the distillation process in the distributed training setting, mainly with non-IID data. We highlight some elements that require special considerations when transferring knowledge between already pre-trained models: the transfer set, the temperature, the weight, and the positioning. Appropriately tuning these hyper-parameters can remarkably boost learning outcomes. In our experiments, around two-thirds of the participants require settings other than commonly used default settings in literature, and appropriate tuning can reach more than five times improvement on average.","PeriodicalId":370204,"journal":{"name":"Proceedings of the 3rd Workshop on Machine Learning and Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A First Look at the Impact of Distillation Hyper-Parameters in Federated Knowledge Distillation\",\"authors\":\"Norah Alballa, M. Canini\",\"doi\":\"10.1145/3578356.3592590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge distillation has been known as a useful way for model compression. It has been recently adopted in the distributed training domain, such as federated learning, as a way to transfer knowledge between already pre-trained models. Knowledge distillation in distributed settings promises advantages, including significantly reducing the communication overhead and allowing heterogeneous model architectures. However, distillation is still not well studied and understood in such settings, which hinders the possible gains. We bridge this gap by performing an experimental analysis of the distillation process in the distributed training setting, mainly with non-IID data. We highlight some elements that require special considerations when transferring knowledge between already pre-trained models: the transfer set, the temperature, the weight, and the positioning. Appropriately tuning these hyper-parameters can remarkably boost learning outcomes. In our experiments, around two-thirds of the participants require settings other than commonly used default settings in literature, and appropriate tuning can reach more than five times improvement on average.\",\"PeriodicalId\":370204,\"journal\":{\"name\":\"Proceedings of the 3rd Workshop on Machine Learning and Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd Workshop on Machine Learning and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3578356.3592590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Workshop on Machine Learning and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3578356.3592590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

知识蒸馏是一种有效的模型压缩方法。它最近被用于分布式训练领域,例如联邦学习,作为一种在已经预先训练的模型之间传递知识的方法。分布式环境中的知识蒸馏有很多优点,包括显著减少通信开销和允许异构模型体系结构。然而,在这种情况下,蒸馏仍然没有得到很好的研究和理解,这阻碍了可能的收获。我们通过对分布式训练集(主要是非iid数据)中的蒸馏过程进行实验分析来弥补这一差距。我们强调了在已经预先训练的模型之间转移知识时需要特别考虑的一些元素:转移集、温度、权重和定位。适当地调整这些超参数可以显著提高学习效果。在我们的实验中,大约三分之二的参与者需要的设置与文献中常用的默认设置不同,适当的调优可以达到平均五倍以上的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A First Look at the Impact of Distillation Hyper-Parameters in Federated Knowledge Distillation
Knowledge distillation has been known as a useful way for model compression. It has been recently adopted in the distributed training domain, such as federated learning, as a way to transfer knowledge between already pre-trained models. Knowledge distillation in distributed settings promises advantages, including significantly reducing the communication overhead and allowing heterogeneous model architectures. However, distillation is still not well studied and understood in such settings, which hinders the possible gains. We bridge this gap by performing an experimental analysis of the distillation process in the distributed training setting, mainly with non-IID data. We highlight some elements that require special considerations when transferring knowledge between already pre-trained models: the transfer set, the temperature, the weight, and the positioning. Appropriately tuning these hyper-parameters can remarkably boost learning outcomes. In our experiments, around two-thirds of the participants require settings other than commonly used default settings in literature, and appropriate tuning can reach more than five times improvement on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信