基于ANFIS的无颤振血糖控制

R. Ramezanzadeh, Seyed Mahdi Hadad Baygi, Javad Farzaneh, A. Karsaz
{"title":"基于ANFIS的无颤振血糖控制","authors":"R. Ramezanzadeh, Seyed Mahdi Hadad Baygi, Javad Farzaneh, A. Karsaz","doi":"10.1109/FUZZ-IEEE.2017.8015734","DOIUrl":null,"url":null,"abstract":"In the medical field determination of appropriate rate of insulin injection in order to stabilize the blood glucose to a normal level is vital for diabetics. In this paper, an adaptive neuro-fuzzy inference system (ANFIS) based on hybrid blood glucose control data set has been presented. Hybrid blood glucose control employs combination of the fuzzy logic controller optimized by genetic algorithm with well-known Palumbo control method to regulate the blood glucose level in type-1 diabetic mellitus (T1DM) patients. Due to the complexity of the hybrid controller and nonlinear and delayed nature of glucose-insulin mechanism as well as chattering phenomenon, the artificial intelligence based technique, especially the ANFIS method, is proposed in this paper. Finally, the simulation results of the fuzzy control, fuzzy-genetic control, Palumbo control and hybrid control are compared to the new proposed ANFIS control, which indicates the proper functioning of the proposed controller for tracking of desired blood glucose level at the lowest possible chattering error.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chattering-free blood glucose level control based on ANFIS\",\"authors\":\"R. Ramezanzadeh, Seyed Mahdi Hadad Baygi, Javad Farzaneh, A. Karsaz\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the medical field determination of appropriate rate of insulin injection in order to stabilize the blood glucose to a normal level is vital for diabetics. In this paper, an adaptive neuro-fuzzy inference system (ANFIS) based on hybrid blood glucose control data set has been presented. Hybrid blood glucose control employs combination of the fuzzy logic controller optimized by genetic algorithm with well-known Palumbo control method to regulate the blood glucose level in type-1 diabetic mellitus (T1DM) patients. Due to the complexity of the hybrid controller and nonlinear and delayed nature of glucose-insulin mechanism as well as chattering phenomenon, the artificial intelligence based technique, especially the ANFIS method, is proposed in this paper. Finally, the simulation results of the fuzzy control, fuzzy-genetic control, Palumbo control and hybrid control are compared to the new proposed ANFIS control, which indicates the proper functioning of the proposed controller for tracking of desired blood glucose level at the lowest possible chattering error.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在医学领域,确定适当的胰岛素注射率以使血糖稳定在正常水平对糖尿病患者至关重要。提出了一种基于混合血糖控制数据集的自适应神经模糊推理系统(ANFIS)。混合式血糖控制是将遗传算法优化的模糊控制器与著名的Palumbo控制法相结合来调节1型糖尿病(T1DM)患者的血糖水平。针对混合控制器的复杂性、葡萄糖-胰岛素机制的非线性和延迟性以及抖振现象,本文提出了基于人工智能的方法,特别是ANFIS方法。最后,将模糊控制、模糊遗传控制、Palumbo控制和混合控制的仿真结果与所提出的ANFIS控制进行了比较,表明所提出的控制器在最小抖振误差下能够很好地跟踪期望血糖水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chattering-free blood glucose level control based on ANFIS
In the medical field determination of appropriate rate of insulin injection in order to stabilize the blood glucose to a normal level is vital for diabetics. In this paper, an adaptive neuro-fuzzy inference system (ANFIS) based on hybrid blood glucose control data set has been presented. Hybrid blood glucose control employs combination of the fuzzy logic controller optimized by genetic algorithm with well-known Palumbo control method to regulate the blood glucose level in type-1 diabetic mellitus (T1DM) patients. Due to the complexity of the hybrid controller and nonlinear and delayed nature of glucose-insulin mechanism as well as chattering phenomenon, the artificial intelligence based technique, especially the ANFIS method, is proposed in this paper. Finally, the simulation results of the fuzzy control, fuzzy-genetic control, Palumbo control and hybrid control are compared to the new proposed ANFIS control, which indicates the proper functioning of the proposed controller for tracking of desired blood glucose level at the lowest possible chattering error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信