{"title":"具有能量恢复功能的高效电压神经组织刺激器","authors":"Shawn K. Kelly, John L. Wyatt","doi":"10.1109/ISSCC.2004.1332677","DOIUrl":null,"url":null,"abstract":"A voltage-based neural stimulator for an implant is fabricated in 1.5/spl mu/m CMOS. Wireless power transmission and synchronous rectification allow the use of a set of intermediate voltage supplies. This system achieves power consumption 53% lower than traditional current-source stimulators delivering the same charge to electrodes.","PeriodicalId":273317,"journal":{"name":"2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A power-efficient voltage-based neural tissue stimulator with energy recovery\",\"authors\":\"Shawn K. Kelly, John L. Wyatt\",\"doi\":\"10.1109/ISSCC.2004.1332677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A voltage-based neural stimulator for an implant is fabricated in 1.5/spl mu/m CMOS. Wireless power transmission and synchronous rectification allow the use of a set of intermediate voltage supplies. This system achieves power consumption 53% lower than traditional current-source stimulators delivering the same charge to electrodes.\",\"PeriodicalId\":273317,\"journal\":{\"name\":\"2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2004.1332677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2004.1332677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A power-efficient voltage-based neural tissue stimulator with energy recovery
A voltage-based neural stimulator for an implant is fabricated in 1.5/spl mu/m CMOS. Wireless power transmission and synchronous rectification allow the use of a set of intermediate voltage supplies. This system achieves power consumption 53% lower than traditional current-source stimulators delivering the same charge to electrodes.