基于流形技术的高光谱图像边缘检测

Yuan Zhou, Bo Wu, Deren Li, Rongxing Li
{"title":"基于流形技术的高光谱图像边缘检测","authors":"Yuan Zhou, Bo Wu, Deren Li, Rongxing Li","doi":"10.1109/WHISPERS.2009.5288984","DOIUrl":null,"url":null,"abstract":"For hyperspectral imagery, the term “spectral edge” has not been clearly defined because of the complexity of the high dimensional properties in spectral space. In this paper, a new definition of the spectral edge is presented based on a data-driven mathematic approach Manifold Learning. It considers both the spectral features in spectral space and the discontinuity of image function in image space. Experimental analysis using EO-1 hyperspectral imagery shows that the spectral edge based method has desired performance to describe the edge contours in the hyperspectral imagery.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Edge detection on hyperspectral imagery via Manifold techniques\",\"authors\":\"Yuan Zhou, Bo Wu, Deren Li, Rongxing Li\",\"doi\":\"10.1109/WHISPERS.2009.5288984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For hyperspectral imagery, the term “spectral edge” has not been clearly defined because of the complexity of the high dimensional properties in spectral space. In this paper, a new definition of the spectral edge is presented based on a data-driven mathematic approach Manifold Learning. It considers both the spectral features in spectral space and the discontinuity of image function in image space. Experimental analysis using EO-1 hyperspectral imagery shows that the spectral edge based method has desired performance to describe the edge contours in the hyperspectral imagery.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5288984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5288984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

对于高光谱图像,由于光谱空间高维特性的复杂性,“光谱边缘”一词一直没有明确的定义。本文基于数据驱动的流形学习数学方法,提出了光谱边缘的一种新定义。它既考虑了光谱空间中的光谱特征,又考虑了图像函数在图像空间中的不连续。基于EO-1高光谱图像的实验分析表明,基于光谱边缘的方法能够较好地描述高光谱图像中的边缘轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge detection on hyperspectral imagery via Manifold techniques
For hyperspectral imagery, the term “spectral edge” has not been clearly defined because of the complexity of the high dimensional properties in spectral space. In this paper, a new definition of the spectral edge is presented based on a data-driven mathematic approach Manifold Learning. It considers both the spectral features in spectral space and the discontinuity of image function in image space. Experimental analysis using EO-1 hyperspectral imagery shows that the spectral edge based method has desired performance to describe the edge contours in the hyperspectral imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信