佛罗里达高桩回弹土的压锥渗透试验

Fauzi H. Jarushi, P. Cosentino, E. H. Kalajian
{"title":"佛罗里达高桩回弹土的压锥渗透试验","authors":"Fauzi H. Jarushi, P. Cosentino, E. H. Kalajian","doi":"10.1179/dfi.2013.7.2.003","DOIUrl":null,"url":null,"abstract":"Abstract Contractors and engineers have experienced pile installation problems while driving high displacement piles with single-acting diesel hammers at Florida Department of Transportation (FDOT) construction sites located throughout the Central and Panhandle regions of Florida. At certain depths during pile driving in saturated soils, rebound exceeding 1 inch (25 mm) was experienced, followed by a small permanent-set during each hammer blow. High pile rebound (HPR) may cause false refusal to occur, stopping the pile driving and resulting in a limited pile capacity. In some cases, rebound leads to pile damage, delaying of the construction project and foundation redesign. In this paper, the response of HPR is investigated using cone penetrometer testing (CPT) and a pile driving analyzer (PDA). PDA data, which yielded the amount and the depth where rebound occurred, produced the pile movement per blow, Nineteen Piezocone soundings were performed at seven FDOT sites in Florida, of which five sites experienced a rebound greater than 0.6 inches (15 mm), one site yielded rebound of 0.35 inches (9 mm), and one site’s rebound was less than the FDOT limit of 0.25 inches (6 mm). In order to improve the knowledge about the soil types producing HPR, a traditional geotechnical investigation on grain-size distribution and soil plasticity allowing for classification using Unified Soil Classification System (USCS) was conducted. Piezocone data were interpreted using the CPT and CPTu soil behavior type (SBT) charts proposed by Schmertmann (1978), Robertson (1990) (i.e., Q-Fr, Q-Rf, and Q-Bq), Eslami and Fellenius (2004), and Schneider et al. (2008). Comparison with classification data from laboratory tests was in excellent agreement with the CPT soil type, indicating that the CPT is a useful tool in evaluation of HPR or “large quake” soils. Correlations between rebound and CPTu data were developed showing that rebound is a direct function of both friction ratio Rf and pore pressure u2.","PeriodicalId":272645,"journal":{"name":"DFI Journal - The Journal of the Deep Foundations Institute","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Piezocone Penetration Testing in Florida High Pile Rebound Soils\",\"authors\":\"Fauzi H. Jarushi, P. Cosentino, E. H. Kalajian\",\"doi\":\"10.1179/dfi.2013.7.2.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Contractors and engineers have experienced pile installation problems while driving high displacement piles with single-acting diesel hammers at Florida Department of Transportation (FDOT) construction sites located throughout the Central and Panhandle regions of Florida. At certain depths during pile driving in saturated soils, rebound exceeding 1 inch (25 mm) was experienced, followed by a small permanent-set during each hammer blow. High pile rebound (HPR) may cause false refusal to occur, stopping the pile driving and resulting in a limited pile capacity. In some cases, rebound leads to pile damage, delaying of the construction project and foundation redesign. In this paper, the response of HPR is investigated using cone penetrometer testing (CPT) and a pile driving analyzer (PDA). PDA data, which yielded the amount and the depth where rebound occurred, produced the pile movement per blow, Nineteen Piezocone soundings were performed at seven FDOT sites in Florida, of which five sites experienced a rebound greater than 0.6 inches (15 mm), one site yielded rebound of 0.35 inches (9 mm), and one site’s rebound was less than the FDOT limit of 0.25 inches (6 mm). In order to improve the knowledge about the soil types producing HPR, a traditional geotechnical investigation on grain-size distribution and soil plasticity allowing for classification using Unified Soil Classification System (USCS) was conducted. Piezocone data were interpreted using the CPT and CPTu soil behavior type (SBT) charts proposed by Schmertmann (1978), Robertson (1990) (i.e., Q-Fr, Q-Rf, and Q-Bq), Eslami and Fellenius (2004), and Schneider et al. (2008). Comparison with classification data from laboratory tests was in excellent agreement with the CPT soil type, indicating that the CPT is a useful tool in evaluation of HPR or “large quake” soils. Correlations between rebound and CPTu data were developed showing that rebound is a direct function of both friction ratio Rf and pore pressure u2.\",\"PeriodicalId\":272645,\"journal\":{\"name\":\"DFI Journal - The Journal of the Deep Foundations Institute\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DFI Journal - The Journal of the Deep Foundations Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/dfi.2013.7.2.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DFI Journal - The Journal of the Deep Foundations Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/dfi.2013.7.2.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

承包商和工程师在佛罗里达州交通部(FDOT)位于佛罗里达州中部和狭长地区的建筑工地使用单作用柴油锤打入大位移桩时遇到了桩安装问题。在饱和土中打桩过程中,在一定深度处,回弹超过1英寸(25毫米),随后每次锤击都有一个小的永久固结。高桩回弹(HPR)会引起假拒绝,导致打桩停止,导致桩容有限。在某些情况下,回弹会导致桩的损坏,延误施工项目和基础重新设计。本文采用锥形贯入仪(CPT)和打桩分析仪(PDA)研究了HPR的响应。PDA数据产生反弹发生的数量和深度,每击桩产生运动,19 Piezocone测深进行七FDOT地点在佛罗里达州,其中五个网站经历了一个反弹大于0.6英寸(15毫米),一个站点产生反弹的0.35英寸(9毫米),和一个网站的反弹还不到FDOT极限的0.25英寸(6毫米)。为了提高对产生HPR的土壤类型的认识,利用统一土壤分类系统(USCS)对土壤粒度分布和土壤塑性进行了传统的岩土工程调查。采用Schmertmann(1978)、Robertson(1990)(即Q-Fr、Q-Rf和Q-Bq)、Eslami和Fellenius(2004)以及Schneider等人(2008)提出的CPT和CPTu土壤行为类型(SBT)图对压电锥数据进行解释。与室内试验分类数据的比较与CPT土的类型非常吻合,表明CPT是评价HPR或“大地震”土的有用工具。反弹与CPTu数据之间的相关性表明,反弹是摩擦比Rf和孔隙压力u2的直接函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piezocone Penetration Testing in Florida High Pile Rebound Soils
Abstract Contractors and engineers have experienced pile installation problems while driving high displacement piles with single-acting diesel hammers at Florida Department of Transportation (FDOT) construction sites located throughout the Central and Panhandle regions of Florida. At certain depths during pile driving in saturated soils, rebound exceeding 1 inch (25 mm) was experienced, followed by a small permanent-set during each hammer blow. High pile rebound (HPR) may cause false refusal to occur, stopping the pile driving and resulting in a limited pile capacity. In some cases, rebound leads to pile damage, delaying of the construction project and foundation redesign. In this paper, the response of HPR is investigated using cone penetrometer testing (CPT) and a pile driving analyzer (PDA). PDA data, which yielded the amount and the depth where rebound occurred, produced the pile movement per blow, Nineteen Piezocone soundings were performed at seven FDOT sites in Florida, of which five sites experienced a rebound greater than 0.6 inches (15 mm), one site yielded rebound of 0.35 inches (9 mm), and one site’s rebound was less than the FDOT limit of 0.25 inches (6 mm). In order to improve the knowledge about the soil types producing HPR, a traditional geotechnical investigation on grain-size distribution and soil plasticity allowing for classification using Unified Soil Classification System (USCS) was conducted. Piezocone data were interpreted using the CPT and CPTu soil behavior type (SBT) charts proposed by Schmertmann (1978), Robertson (1990) (i.e., Q-Fr, Q-Rf, and Q-Bq), Eslami and Fellenius (2004), and Schneider et al. (2008). Comparison with classification data from laboratory tests was in excellent agreement with the CPT soil type, indicating that the CPT is a useful tool in evaluation of HPR or “large quake” soils. Correlations between rebound and CPTu data were developed showing that rebound is a direct function of both friction ratio Rf and pore pressure u2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信