Khalfalla Awedat, Almabrok E. Essa, V. Asari, David Stoppenbrink
{"title":"基于稀疏表示的不同优化形式下的人脸识别分类性能","authors":"Khalfalla Awedat, Almabrok E. Essa, V. Asari, David Stoppenbrink","doi":"10.1109/NAECON.2017.8268721","DOIUrl":null,"url":null,"abstract":"Sparse representation-based classification (SRC) has become one of the most powerful methods for robust face recognition. However, there are some limitations of SRC performance at the presence of noise, occlusion, and illumination variation problems, which make it unstable. Therefore, we investigate the performance of SRC under different data conditions by applying the most powerful optimization methods based on SRC and focusing on the corrections between data samples and the sparseness. For evaluation, we utilize several challenging face datasets that include diversity of illumination and occlusion conditions.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse representation based classification performance under different optimization forms for face recognition\",\"authors\":\"Khalfalla Awedat, Almabrok E. Essa, V. Asari, David Stoppenbrink\",\"doi\":\"10.1109/NAECON.2017.8268721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse representation-based classification (SRC) has become one of the most powerful methods for robust face recognition. However, there are some limitations of SRC performance at the presence of noise, occlusion, and illumination variation problems, which make it unstable. Therefore, we investigate the performance of SRC under different data conditions by applying the most powerful optimization methods based on SRC and focusing on the corrections between data samples and the sparseness. For evaluation, we utilize several challenging face datasets that include diversity of illumination and occlusion conditions.\",\"PeriodicalId\":306091,\"journal\":{\"name\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2017.8268721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse representation based classification performance under different optimization forms for face recognition
Sparse representation-based classification (SRC) has become one of the most powerful methods for robust face recognition. However, there are some limitations of SRC performance at the presence of noise, occlusion, and illumination variation problems, which make it unstable. Therefore, we investigate the performance of SRC under different data conditions by applying the most powerful optimization methods based on SRC and focusing on the corrections between data samples and the sparseness. For evaluation, we utilize several challenging face datasets that include diversity of illumination and occlusion conditions.