Chenye Zhao, J. Mangat, Sujay Koujalgi, A. Squicciarini, Cornelia Caragea
{"title":"PrivacyAlert:一个图像隐私预测数据集","authors":"Chenye Zhao, J. Mangat, Sujay Koujalgi, A. Squicciarini, Cornelia Caragea","doi":"10.1609/icwsm.v16i1.19387","DOIUrl":null,"url":null,"abstract":"Image privacy issues have become an important challenge as millions of images are being shared on social networking sites every day. Often due to users' lack of privacy awareness and social pressure, users' posted images reveal sensitive information and may be easily used to their detriment. To address these issues, several recent studies have proposed machine learning models to automatically identify whether an image contains private information. However, progress on this important task has been hampered by the absence of reliable, publicly available, up-to-date datasets. To this end, we introduce PrivacyAlert, a dataset developed from recent images extracted from Flickr and annotated with privacy labels (private or public). Our data collection process is based on state-of-the-art privacy taxonomy and captures a comprehensive set of image types of various sensitivity. We perform a comprehensive analysis of our dataset and report image privacy prediction results using classic and deep learning models to set the ground for future studies. Our dataset is publicly available at: https://doi.org/10.5281/zenodo.6406870.","PeriodicalId":175641,"journal":{"name":"International Conference on Web and Social Media","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"PrivacyAlert: A Dataset for Image Privacy Prediction\",\"authors\":\"Chenye Zhao, J. Mangat, Sujay Koujalgi, A. Squicciarini, Cornelia Caragea\",\"doi\":\"10.1609/icwsm.v16i1.19387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image privacy issues have become an important challenge as millions of images are being shared on social networking sites every day. Often due to users' lack of privacy awareness and social pressure, users' posted images reveal sensitive information and may be easily used to their detriment. To address these issues, several recent studies have proposed machine learning models to automatically identify whether an image contains private information. However, progress on this important task has been hampered by the absence of reliable, publicly available, up-to-date datasets. To this end, we introduce PrivacyAlert, a dataset developed from recent images extracted from Flickr and annotated with privacy labels (private or public). Our data collection process is based on state-of-the-art privacy taxonomy and captures a comprehensive set of image types of various sensitivity. We perform a comprehensive analysis of our dataset and report image privacy prediction results using classic and deep learning models to set the ground for future studies. Our dataset is publicly available at: https://doi.org/10.5281/zenodo.6406870.\",\"PeriodicalId\":175641,\"journal\":{\"name\":\"International Conference on Web and Social Media\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v16i1.19387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v16i1.19387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PrivacyAlert: A Dataset for Image Privacy Prediction
Image privacy issues have become an important challenge as millions of images are being shared on social networking sites every day. Often due to users' lack of privacy awareness and social pressure, users' posted images reveal sensitive information and may be easily used to their detriment. To address these issues, several recent studies have proposed machine learning models to automatically identify whether an image contains private information. However, progress on this important task has been hampered by the absence of reliable, publicly available, up-to-date datasets. To this end, we introduce PrivacyAlert, a dataset developed from recent images extracted from Flickr and annotated with privacy labels (private or public). Our data collection process is based on state-of-the-art privacy taxonomy and captures a comprehensive set of image types of various sensitivity. We perform a comprehensive analysis of our dataset and report image privacy prediction results using classic and deep learning models to set the ground for future studies. Our dataset is publicly available at: https://doi.org/10.5281/zenodo.6406870.