利用正向向后两两格兰杰因果关系进行基因网络推断

M. Furqan, M. Y. Siyal
{"title":"利用正向向后两两格兰杰因果关系进行基因网络推断","authors":"M. Furqan, M. Y. Siyal","doi":"10.1109/AIMS.2015.58","DOIUrl":null,"url":null,"abstract":"Discovery of temporal dependence is the basic idea for evaluating gene networks using Granger causality. However, with the advancement of technology, now we can analyze multiple genes simultaneously that result in high dimensional data. Recent studies suggest that more causal information can be retrieved if we reverse the time stamp of time series data along with standard time series data. Based on these findings, we are proposing a new method called Forward Backward Pair wise Granger Causality. The results how that our method can handle high dimensional data and can extract more causal information compared to the standard ordinary least squares method. We have performed a comparison of proposed and existing method using simulated data and then used the proposed method on real Hela cell data and mapped the 19 genes that are commonly present in cancer.","PeriodicalId":121874,"journal":{"name":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Network Inference Using Forward Backward Pairwise Granger Causality\",\"authors\":\"M. Furqan, M. Y. Siyal\",\"doi\":\"10.1109/AIMS.2015.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovery of temporal dependence is the basic idea for evaluating gene networks using Granger causality. However, with the advancement of technology, now we can analyze multiple genes simultaneously that result in high dimensional data. Recent studies suggest that more causal information can be retrieved if we reverse the time stamp of time series data along with standard time series data. Based on these findings, we are proposing a new method called Forward Backward Pair wise Granger Causality. The results how that our method can handle high dimensional data and can extract more causal information compared to the standard ordinary least squares method. We have performed a comparison of proposed and existing method using simulated data and then used the proposed method on real Hela cell data and mapped the 19 genes that are commonly present in cancer.\",\"PeriodicalId\":121874,\"journal\":{\"name\":\"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMS.2015.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS.2015.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发现时间依赖性是利用格兰杰因果关系评价基因网络的基本思想。然而,随着技术的进步,现在我们可以同时分析多个基因,从而获得高维数据。最近的研究表明,如果我们将时间序列数据的时间戳与标准时间序列数据一起反向,可以检索到更多的因果信息。基于这些发现,我们提出了一种新的方法,称为正向向后配对格兰杰因果关系。结果表明,与标准的普通最小二乘法相比,该方法可以处理高维数据,并且可以提取更多的因果信息。我们使用模拟数据对提出的方法和现有的方法进行了比较,然后将提出的方法用于真实的海拉细胞数据,并绘制了19个常见的癌症基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene Network Inference Using Forward Backward Pairwise Granger Causality
Discovery of temporal dependence is the basic idea for evaluating gene networks using Granger causality. However, with the advancement of technology, now we can analyze multiple genes simultaneously that result in high dimensional data. Recent studies suggest that more causal information can be retrieved if we reverse the time stamp of time series data along with standard time series data. Based on these findings, we are proposing a new method called Forward Backward Pair wise Granger Causality. The results how that our method can handle high dimensional data and can extract more causal information compared to the standard ordinary least squares method. We have performed a comparison of proposed and existing method using simulated data and then used the proposed method on real Hela cell data and mapped the 19 genes that are commonly present in cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信