{"title":"量子计算机的混合核方法模型","authors":"Jhordan Silveira de Borba, J. Maziero","doi":"10.3895/rbfta.v9n1.14100","DOIUrl":null,"url":null,"abstract":"Reconhecendo que a área de aprendizado de máquina quântica é um caminho promissor para oferecer uma revolução nos métodos inteligentes de processamento de dados, propõe-se um método de aprendizado híbrido baseado nos métodos de kernel clássicos. Esta proposta também exige que um algoritmo quântico seja desenvolvido para o cálculo de produto interno entre vetores sobre valores contínuos. Para isso ser possível, foi preciso realizar adaptações no método kernel clássico, visto que é necessário considerar as limitações impostas pelo espaço de Hilbert do processador quântico. Como um caso de teste, foi verificada a capacidade do algoritmo de aprender a classificar se novos pontos gerados aleatoriamente, em um quadrado finito localizado sob um plano, se encontravam dentro ou fora de um círculo localizado no interior deste quadrado. Verificou-se que o algoritmo foi capaz de detectar corretamente novos pontos em 99% dos casos testados, com uma pequena diferença devido a considerar o raio levemente maior do que o idealizado. O método kernel se mostrou capaz de realizar classificações corretamente, assim como o algoritmo do produto interno efetuou satisfatoriamente os cálculos de produto interno utilizando recursos quânticos. Assim, o presente trabalho representa uma contribuição para a área propondo um novo modelo de aprendizado de máquina acessível tanto a físicos quanto a cientistas da computação.","PeriodicalId":193186,"journal":{"name":"Revista Brasileira de Física Tecnológica Aplicada","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelo híbrido de método kernel para computadores quânticos\",\"authors\":\"Jhordan Silveira de Borba, J. Maziero\",\"doi\":\"10.3895/rbfta.v9n1.14100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconhecendo que a área de aprendizado de máquina quântica é um caminho promissor para oferecer uma revolução nos métodos inteligentes de processamento de dados, propõe-se um método de aprendizado híbrido baseado nos métodos de kernel clássicos. Esta proposta também exige que um algoritmo quântico seja desenvolvido para o cálculo de produto interno entre vetores sobre valores contínuos. Para isso ser possível, foi preciso realizar adaptações no método kernel clássico, visto que é necessário considerar as limitações impostas pelo espaço de Hilbert do processador quântico. Como um caso de teste, foi verificada a capacidade do algoritmo de aprender a classificar se novos pontos gerados aleatoriamente, em um quadrado finito localizado sob um plano, se encontravam dentro ou fora de um círculo localizado no interior deste quadrado. Verificou-se que o algoritmo foi capaz de detectar corretamente novos pontos em 99% dos casos testados, com uma pequena diferença devido a considerar o raio levemente maior do que o idealizado. O método kernel se mostrou capaz de realizar classificações corretamente, assim como o algoritmo do produto interno efetuou satisfatoriamente os cálculos de produto interno utilizando recursos quânticos. Assim, o presente trabalho representa uma contribuição para a área propondo um novo modelo de aprendizado de máquina acessível tanto a físicos quanto a cientistas da computação.\",\"PeriodicalId\":193186,\"journal\":{\"name\":\"Revista Brasileira de Física Tecnológica Aplicada\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Física Tecnológica Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3895/rbfta.v9n1.14100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Física Tecnológica Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3895/rbfta.v9n1.14100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelo híbrido de método kernel para computadores quânticos
Reconhecendo que a área de aprendizado de máquina quântica é um caminho promissor para oferecer uma revolução nos métodos inteligentes de processamento de dados, propõe-se um método de aprendizado híbrido baseado nos métodos de kernel clássicos. Esta proposta também exige que um algoritmo quântico seja desenvolvido para o cálculo de produto interno entre vetores sobre valores contínuos. Para isso ser possível, foi preciso realizar adaptações no método kernel clássico, visto que é necessário considerar as limitações impostas pelo espaço de Hilbert do processador quântico. Como um caso de teste, foi verificada a capacidade do algoritmo de aprender a classificar se novos pontos gerados aleatoriamente, em um quadrado finito localizado sob um plano, se encontravam dentro ou fora de um círculo localizado no interior deste quadrado. Verificou-se que o algoritmo foi capaz de detectar corretamente novos pontos em 99% dos casos testados, com uma pequena diferença devido a considerar o raio levemente maior do que o idealizado. O método kernel se mostrou capaz de realizar classificações corretamente, assim como o algoritmo do produto interno efetuou satisfatoriamente os cálculos de produto interno utilizando recursos quânticos. Assim, o presente trabalho representa uma contribuição para a área propondo um novo modelo de aprendizado de máquina acessível tanto a físicos quanto a cientistas da computação.