利用图神经网络发现动态网络中的结构孔扳手

Diksha Goel, Hong Shen, Hui Tian, Ming-Chi Guo
{"title":"利用图神经网络发现动态网络中的结构孔扳手","authors":"Diksha Goel, Hong Shen, Hui Tian, Ming-Chi Guo","doi":"10.1109/WI-IAT55865.2022.00019","DOIUrl":null,"url":null,"abstract":"Structural Hole (SH) theory states that the node which acts as a connecting link among otherwise disconnected communities gets positional advantages in the network. These nodes are called Structural Hole Spanners (SHS). SHSs have many applications, including viral marketing, information dissemination, community detection, etc. Numerous solutions are proposed to discover SHSs; however, most of the solutions are only applicable to static networks. Since real-world networks are dynamic networks; consequently, in this study, we aim to discover SHSs in dynamic networks. Discovering SHSs is an NPhard problem, due to which, instead of discovering exact k SHSs, we adopt a greedy approach to discover top-k SHSs. Motivated from the success of Graph Neural Networks (GNNs) on various graph mining problems, we design a Graph Neural Network-based model, GNN-SHS, to discover SHSs in dynamic networks, aiming to reduce the computational cost while achieving high accuracy. We analyze the efficiency of the proposed model through exhaustive experiments, and our results show that the proposed GNN-SHS model is at least 31.8 times faster and, on an average 671.6 times faster than the comparative method, providing a considerable efficiency advantage.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering Structural Hole Spanners in Dynamic Networks via Graph Neural Networks\",\"authors\":\"Diksha Goel, Hong Shen, Hui Tian, Ming-Chi Guo\",\"doi\":\"10.1109/WI-IAT55865.2022.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural Hole (SH) theory states that the node which acts as a connecting link among otherwise disconnected communities gets positional advantages in the network. These nodes are called Structural Hole Spanners (SHS). SHSs have many applications, including viral marketing, information dissemination, community detection, etc. Numerous solutions are proposed to discover SHSs; however, most of the solutions are only applicable to static networks. Since real-world networks are dynamic networks; consequently, in this study, we aim to discover SHSs in dynamic networks. Discovering SHSs is an NPhard problem, due to which, instead of discovering exact k SHSs, we adopt a greedy approach to discover top-k SHSs. Motivated from the success of Graph Neural Networks (GNNs) on various graph mining problems, we design a Graph Neural Network-based model, GNN-SHS, to discover SHSs in dynamic networks, aiming to reduce the computational cost while achieving high accuracy. We analyze the efficiency of the proposed model through exhaustive experiments, and our results show that the proposed GNN-SHS model is at least 31.8 times faster and, on an average 671.6 times faster than the comparative method, providing a considerable efficiency advantage.\",\"PeriodicalId\":345445,\"journal\":{\"name\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT55865.2022.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结构孔(Structural Hole, SH)理论认为节点在网络中具有位置优势,是连接其他不相连的群体的纽带。这些节点被称为结构孔扳手(SHS)。SHSs有许多应用,包括病毒式营销、信息传播、社区检测等。提出了许多方法来发现SHSs;但是,大多数解决方案只适用于静态网络。因为现实世界的网络是动态的;因此,在本研究中,我们的目标是发现动态网络中的SHSs。发现SHSs是一个NPhard问题,因此,我们采用贪婪的方法来发现top-k SHSs,而不是发现精确的k个SHSs。基于图神经网络(gnn)在各种图挖掘问题上的成功,我们设计了一种基于图神经网络的模型GNN-SHS来发现动态网络中的图挖掘问题,旨在降低计算成本的同时达到较高的准确率。我们通过详尽的实验分析了所提出模型的效率,结果表明,所提出的GNN-SHS模型比比较方法至少快31.8倍,平均快671.6倍,具有相当大的效率优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Structural Hole Spanners in Dynamic Networks via Graph Neural Networks
Structural Hole (SH) theory states that the node which acts as a connecting link among otherwise disconnected communities gets positional advantages in the network. These nodes are called Structural Hole Spanners (SHS). SHSs have many applications, including viral marketing, information dissemination, community detection, etc. Numerous solutions are proposed to discover SHSs; however, most of the solutions are only applicable to static networks. Since real-world networks are dynamic networks; consequently, in this study, we aim to discover SHSs in dynamic networks. Discovering SHSs is an NPhard problem, due to which, instead of discovering exact k SHSs, we adopt a greedy approach to discover top-k SHSs. Motivated from the success of Graph Neural Networks (GNNs) on various graph mining problems, we design a Graph Neural Network-based model, GNN-SHS, to discover SHSs in dynamic networks, aiming to reduce the computational cost while achieving high accuracy. We analyze the efficiency of the proposed model through exhaustive experiments, and our results show that the proposed GNN-SHS model is at least 31.8 times faster and, on an average 671.6 times faster than the comparative method, providing a considerable efficiency advantage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信