车载边缘计算的嵌入式深度学习

J. Hochstetler, Rahul Padidela, Qi Chen, Qing Yang, Song Fu
{"title":"车载边缘计算的嵌入式深度学习","authors":"J. Hochstetler, Rahul Padidela, Qi Chen, Qing Yang, Song Fu","doi":"10.1109/SEC.2018.00038","DOIUrl":null,"url":null,"abstract":"The accuracy of object recognition has been greatly improved due to the rapid development of deep learning, but the deep learning generally requires a lot of training data and the training process is very slow and complex. In this work, an Intel Movidius\" Neural Compute Stick along with Raspberry Pi 3 Model B is used to analyze the objects in the real time images and videos for vehicular edge computing. The results shown in this study tells how the stick performs in conjunction with different operating systems and processing power.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Embedded Deep Learning for Vehicular Edge Computing\",\"authors\":\"J. Hochstetler, Rahul Padidela, Qi Chen, Qing Yang, Song Fu\",\"doi\":\"10.1109/SEC.2018.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of object recognition has been greatly improved due to the rapid development of deep learning, but the deep learning generally requires a lot of training data and the training process is very slow and complex. In this work, an Intel Movidius\\\" Neural Compute Stick along with Raspberry Pi 3 Model B is used to analyze the objects in the real time images and videos for vehicular edge computing. The results shown in this study tells how the stick performs in conjunction with different operating systems and processing power.\",\"PeriodicalId\":376439,\"journal\":{\"name\":\"2018 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC.2018.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

由于深度学习的快速发展,物体识别的准确性得到了很大的提高,但深度学习一般需要大量的训练数据,训练过程非常缓慢和复杂。在这项工作中,使用英特尔Movidius“神经计算棒”和树莓派3模型B来分析实时图像和视频中的物体,用于车辆边缘计算。这项研究的结果告诉我们操纵杆在不同操作系统和处理能力下的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded Deep Learning for Vehicular Edge Computing
The accuracy of object recognition has been greatly improved due to the rapid development of deep learning, but the deep learning generally requires a lot of training data and the training process is very slow and complex. In this work, an Intel Movidius" Neural Compute Stick along with Raspberry Pi 3 Model B is used to analyze the objects in the real time images and videos for vehicular edge computing. The results shown in this study tells how the stick performs in conjunction with different operating systems and processing power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信