基于质心和学习向量量化的指纹验证

C. A. D. L. Ortega, Jorge A. Ramirez-Marquez, M. Mora-González, J. Romo, Cesar A. Lopez-Luevano
{"title":"基于质心和学习向量量化的指纹验证","authors":"C. A. D. L. Ortega, Jorge A. Ramirez-Marquez, M. Mora-González, J. Romo, Cesar A. Lopez-Luevano","doi":"10.1109/MICAI.2013.21","DOIUrl":null,"url":null,"abstract":"This paper describes a new implementation of a mixture of techniques not used before for fingerprint recognition. The implementation consists of three stages: the location of the core, which is done through Radon transformation, the extraction of features (out of which a square fingerprint is produced with the core, and the center of the mass is obtained from it), in stage three, the resulting image is used to train the neural network in order to obtain better LVQ classification. The improvement of effectiveness is tested using two databases of fingerprints. Correct recognition rates have exceeded 90 percent, which demonstrate its great stability with fingerprints that display a well-defined core.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fingerprint Verification Using the Center of Mass and Learning Vector Quantization\",\"authors\":\"C. A. D. L. Ortega, Jorge A. Ramirez-Marquez, M. Mora-González, J. Romo, Cesar A. Lopez-Luevano\",\"doi\":\"10.1109/MICAI.2013.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new implementation of a mixture of techniques not used before for fingerprint recognition. The implementation consists of three stages: the location of the core, which is done through Radon transformation, the extraction of features (out of which a square fingerprint is produced with the core, and the center of the mass is obtained from it), in stage three, the resulting image is used to train the neural network in order to obtain better LVQ classification. The improvement of effectiveness is tested using two databases of fingerprints. Correct recognition rates have exceeded 90 percent, which demonstrate its great stability with fingerprints that display a well-defined core.\",\"PeriodicalId\":340039,\"journal\":{\"name\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2013.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种新的指纹识别技术的实现方法。实现包括三个阶段:通过Radon变换确定核心位置,提取特征(提取特征与核心生成方形指纹,并从中获得质心),第三阶段将得到的图像用于训练神经网络,以获得更好的LVQ分类。利用两个指纹数据库对改进后的有效性进行了测试。正确识别率超过90%,这表明它对显示明确核心的指纹具有很强的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fingerprint Verification Using the Center of Mass and Learning Vector Quantization
This paper describes a new implementation of a mixture of techniques not used before for fingerprint recognition. The implementation consists of three stages: the location of the core, which is done through Radon transformation, the extraction of features (out of which a square fingerprint is produced with the core, and the center of the mass is obtained from it), in stage three, the resulting image is used to train the neural network in order to obtain better LVQ classification. The improvement of effectiveness is tested using two databases of fingerprints. Correct recognition rates have exceeded 90 percent, which demonstrate its great stability with fingerprints that display a well-defined core.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信