混合动力、插电式和燃料电池汽车能源管理中的不确定路线、目的地和交通预测

D. Opila
{"title":"混合动力、插电式和燃料电池汽车能源管理中的不确定路线、目的地和交通预测","authors":"D. Opila","doi":"10.1109/ACC.2016.7525159","DOIUrl":null,"url":null,"abstract":"This paper incorporates uncertain future route predictions, destinations, and charging locations with associated speed and grade profiles into the energy management control of alternative powertrains like hybrid, plug-in, electric, and fuel cell vehicles. The method allows the combination of other sources of uncertain information like markov driver models, historic speed information, and real-time traffic predictions. This flexibility allows the consideration of a variety of information cases like uncertain traffic/speed and route information, multiple possible destinations, stopping points, and charging locations, simple range estimates to the destination, and no future knowledge at all. The model can be used with any vehicle type and stochastic control method, and is suitable for real-time calculations either on the vehicle or a server. Two techniques are also presented to reduce the computational complexity of the problem. This approach is demonstrated on a simulated trip with two possible destinations using the stochastic dynamic programming algorithm.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Uncertain route, destination, and traffic predictions in energy management for hybrid, plug-in, and fuel-cell vehicles\",\"authors\":\"D. Opila\",\"doi\":\"10.1109/ACC.2016.7525159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper incorporates uncertain future route predictions, destinations, and charging locations with associated speed and grade profiles into the energy management control of alternative powertrains like hybrid, plug-in, electric, and fuel cell vehicles. The method allows the combination of other sources of uncertain information like markov driver models, historic speed information, and real-time traffic predictions. This flexibility allows the consideration of a variety of information cases like uncertain traffic/speed and route information, multiple possible destinations, stopping points, and charging locations, simple range estimates to the destination, and no future knowledge at all. The model can be used with any vehicle type and stochastic control method, and is suitable for real-time calculations either on the vehicle or a server. Two techniques are also presented to reduce the computational complexity of the problem. This approach is demonstrated on a simulated trip with two possible destinations using the stochastic dynamic programming algorithm.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7525159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7525159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文将不确定的未来路线预测、目的地和充电地点与相关的速度和坡度剖面结合到混合动力、插电式、电动和燃料电池汽车等替代动力系统的能源管理控制中。该方法可以结合其他不确定信息来源,如马尔可夫驾驶员模型、历史速度信息和实时交通预测。这种灵活性允许考虑各种信息情况,如不确定的交通/速度和路线信息,多个可能的目的地,停止点和充电位置,到目的地的简单范围估计,以及根本没有未来的知识。该模型适用于任何车辆类型和随机控制方法,适用于车辆或服务器上的实时计算。本文还提出了两种技术来降低问题的计算复杂度。利用随机动态规划算法对具有两个可能目的地的模拟旅行进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertain route, destination, and traffic predictions in energy management for hybrid, plug-in, and fuel-cell vehicles
This paper incorporates uncertain future route predictions, destinations, and charging locations with associated speed and grade profiles into the energy management control of alternative powertrains like hybrid, plug-in, electric, and fuel cell vehicles. The method allows the combination of other sources of uncertain information like markov driver models, historic speed information, and real-time traffic predictions. This flexibility allows the consideration of a variety of information cases like uncertain traffic/speed and route information, multiple possible destinations, stopping points, and charging locations, simple range estimates to the destination, and no future knowledge at all. The model can be used with any vehicle type and stochastic control method, and is suitable for real-time calculations either on the vehicle or a server. Two techniques are also presented to reduce the computational complexity of the problem. This approach is demonstrated on a simulated trip with two possible destinations using the stochastic dynamic programming algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信