基于图像处理和云运动检测的短期太阳辐照度预报

Soumya Tiwari, R. Sabzehgar, M. Rasouli
{"title":"基于图像处理和云运动检测的短期太阳辐照度预报","authors":"Soumya Tiwari, R. Sabzehgar, M. Rasouli","doi":"10.1109/TPEC.2019.8662134","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) grid integration has been the epicenter of research across the globe since their intermittent nature of solar generation can be more predictable. Irradiance forecast using different methods for various time horizons has been the center of attention in the recent literature. In this study, a framework for a very short term irradiance forecast is proposed via combining image processing and machine learning. A series of whole sky images is used for this purpose. Cloud detection and movement tracking are accomplished based on image processing algorithms, future position of the clouds and occlusion to the sun. Then, the irradiance drop is predicted using machine learning algorithms. The effectiveness of the proposed technique is evaluated by the Root Mean Square Error (RMSE) between the actual and forecast values of solar irradiance.","PeriodicalId":424038,"journal":{"name":"2019 IEEE Texas Power and Energy Conference (TPEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Short Term Solar Irradiance Forecast based on Image Processing and Cloud Motion Detection\",\"authors\":\"Soumya Tiwari, R. Sabzehgar, M. Rasouli\",\"doi\":\"10.1109/TPEC.2019.8662134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) grid integration has been the epicenter of research across the globe since their intermittent nature of solar generation can be more predictable. Irradiance forecast using different methods for various time horizons has been the center of attention in the recent literature. In this study, a framework for a very short term irradiance forecast is proposed via combining image processing and machine learning. A series of whole sky images is used for this purpose. Cloud detection and movement tracking are accomplished based on image processing algorithms, future position of the clouds and occlusion to the sun. Then, the irradiance drop is predicted using machine learning algorithms. The effectiveness of the proposed technique is evaluated by the Root Mean Square Error (RMSE) between the actual and forecast values of solar irradiance.\",\"PeriodicalId\":424038,\"journal\":{\"name\":\"2019 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC.2019.8662134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC.2019.8662134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

光伏(PV)电网整合一直是全球研究的中心,因为它们的间歇性太阳能发电更容易预测。利用不同的方法预测不同时间范围的辐照度是近年来研究的热点。在本研究中,提出了一个结合图像处理和机器学习的极短期辐照度预测框架。一系列的全天空图像被用于这个目的。云的检测和运动跟踪是基于图像处理算法、云的未来位置和遮挡太阳来完成的。然后,使用机器学习算法预测辐照度下降。利用太阳辐照度的实际值与预测值之间的均方根误差(RMSE)来评价该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short Term Solar Irradiance Forecast based on Image Processing and Cloud Motion Detection
Photovoltaic (PV) grid integration has been the epicenter of research across the globe since their intermittent nature of solar generation can be more predictable. Irradiance forecast using different methods for various time horizons has been the center of attention in the recent literature. In this study, a framework for a very short term irradiance forecast is proposed via combining image processing and machine learning. A series of whole sky images is used for this purpose. Cloud detection and movement tracking are accomplished based on image processing algorithms, future position of the clouds and occlusion to the sun. Then, the irradiance drop is predicted using machine learning algorithms. The effectiveness of the proposed technique is evaluated by the Root Mean Square Error (RMSE) between the actual and forecast values of solar irradiance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信