量子机器学习用于光伏拓扑优化

Glen S. Uehara, V. Narayanaswamy, C. Tepedelenlioğlu, A. Spanias
{"title":"量子机器学习用于光伏拓扑优化","authors":"Glen S. Uehara, V. Narayanaswamy, C. Tepedelenlioğlu, A. Spanias","doi":"10.1109/IISA56318.2022.9904368","DOIUrl":null,"url":null,"abstract":"Photovoltaic array topology optimization was shown to improve efficiency in renewable energy plants. Previous studies demonstrated improvements via simulation at the level of 7-12% or more. In this paper, we describe solar array topology optimization systems based on quantum machine learning algorithms. The idea of using quantum machine learning can be useful in cases where the objective is to optimize power output in large sites with several thousands of panels. We specifically propose and assess a quantum circuit for a neural network implementation for photovoltaic topology optimization. Results and comparisons are presented using classical and quantum neural network implementations. In addition, solar array topology optimization simulations and comparisons using a quantum neural network are described for different numbers of qubits.","PeriodicalId":217519,"journal":{"name":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantum Machine Learning for Photovoltaic Topology Optimization\",\"authors\":\"Glen S. Uehara, V. Narayanaswamy, C. Tepedelenlioğlu, A. Spanias\",\"doi\":\"10.1109/IISA56318.2022.9904368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic array topology optimization was shown to improve efficiency in renewable energy plants. Previous studies demonstrated improvements via simulation at the level of 7-12% or more. In this paper, we describe solar array topology optimization systems based on quantum machine learning algorithms. The idea of using quantum machine learning can be useful in cases where the objective is to optimize power output in large sites with several thousands of panels. We specifically propose and assess a quantum circuit for a neural network implementation for photovoltaic topology optimization. Results and comparisons are presented using classical and quantum neural network implementations. In addition, solar array topology optimization simulations and comparisons using a quantum neural network are described for different numbers of qubits.\",\"PeriodicalId\":217519,\"journal\":{\"name\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA56318.2022.9904368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA56318.2022.9904368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

光伏阵列拓扑优化可以提高可再生能源电厂的效率。以前的研究表明,通过模拟可以提高7-12%或更高的水平。在本文中,我们描述了基于量子机器学习算法的太阳能电池阵列拓扑优化系统。在目标是优化拥有数千个面板的大型站点的功率输出的情况下,使用量子机器学习的想法可能很有用。我们特别提出并评估了用于光伏拓扑优化的神经网络实现的量子电路。给出了经典神经网络和量子神经网络实现的结果和比较。此外,还描述了使用量子神经网络对不同量子比特数的太阳能电池阵列拓扑优化进行模拟和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Machine Learning for Photovoltaic Topology Optimization
Photovoltaic array topology optimization was shown to improve efficiency in renewable energy plants. Previous studies demonstrated improvements via simulation at the level of 7-12% or more. In this paper, we describe solar array topology optimization systems based on quantum machine learning algorithms. The idea of using quantum machine learning can be useful in cases where the objective is to optimize power output in large sites with several thousands of panels. We specifically propose and assess a quantum circuit for a neural network implementation for photovoltaic topology optimization. Results and comparisons are presented using classical and quantum neural network implementations. In addition, solar array topology optimization simulations and comparisons using a quantum neural network are described for different numbers of qubits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信