电离辐射对主动泵浦掺镱光纤放大器光传输的影响

B. Fox, K. Simmons-Potter
{"title":"电离辐射对主动泵浦掺镱光纤放大器光传输的影响","authors":"B. Fox, K. Simmons-Potter","doi":"10.1109/RADECS45761.2018.9328703","DOIUrl":null,"url":null,"abstract":"Fibers doped with Yb3+ serve as optical amplification elements in many high-power amplification systems, and there is an interest in significantly extending the capabilities of rare-earth doped fiber amplifiers to space-based systems. We investigate the effects of gamma-radiation-induced photodarkening on the performance of such fibers, both for passive as well as active configurations. With an emphasis on low total ionizing doses, passive irradiations were found to show increased absorption across the visible and IR spectrum. Furthermore, continuous-pumping of an Yb3+ -doped fiber amplifier in a gamma radiation environment was found to exhibit significantly greater degradation than a similar intermittently-pumped irradiated amplifier for low total ionizing doses of under 10 krad(Si) [100 Gy(Si)]. We discuss the implications of the data which provide insight into energy-transfer mechanisms in the fibers and the relationship of gamma-radiation-induced photodarkening and pump-radiation-induced photodarkening associated with the observed fiber degradation.","PeriodicalId":248855,"journal":{"name":"2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ionizing Radiation on Optical Transmission of Actively Pumped Yb- Doped Fiber Amplifiers\",\"authors\":\"B. Fox, K. Simmons-Potter\",\"doi\":\"10.1109/RADECS45761.2018.9328703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibers doped with Yb3+ serve as optical amplification elements in many high-power amplification systems, and there is an interest in significantly extending the capabilities of rare-earth doped fiber amplifiers to space-based systems. We investigate the effects of gamma-radiation-induced photodarkening on the performance of such fibers, both for passive as well as active configurations. With an emphasis on low total ionizing doses, passive irradiations were found to show increased absorption across the visible and IR spectrum. Furthermore, continuous-pumping of an Yb3+ -doped fiber amplifier in a gamma radiation environment was found to exhibit significantly greater degradation than a similar intermittently-pumped irradiated amplifier for low total ionizing doses of under 10 krad(Si) [100 Gy(Si)]. We discuss the implications of the data which provide insight into energy-transfer mechanisms in the fibers and the relationship of gamma-radiation-induced photodarkening and pump-radiation-induced photodarkening associated with the observed fiber degradation.\",\"PeriodicalId\":248855,\"journal\":{\"name\":\"2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADECS45761.2018.9328703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th European Conference on Radiation and Its Effects on Components and Systems (RADECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADECS45761.2018.9328703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

掺有Yb3+的光纤在许多高功率放大系统中用作光学放大元件,并且有兴趣将掺稀土光纤放大器的能力显著扩展到天基系统。我们研究了伽马辐射诱导的光变暗对这种光纤性能的影响,包括被动和主动配置。在强调低总电离剂量的情况下,发现被动照射在可见光和红外光谱上显示出增加的吸收。此外,在伽马辐射环境中连续泵浦掺Yb3+的光纤放大器,在低于10 krad(Si) [100 Gy(Si)]的低总电离剂量下,比类似的间歇泵浦辐照放大器表现出更大的降解。我们讨论了这些数据的含义,这些数据提供了对光纤中能量传递机制的见解,以及与观察到的光纤降解相关的伽马辐射诱导光变暗和泵浦辐射诱导光变暗的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Ionizing Radiation on Optical Transmission of Actively Pumped Yb- Doped Fiber Amplifiers
Fibers doped with Yb3+ serve as optical amplification elements in many high-power amplification systems, and there is an interest in significantly extending the capabilities of rare-earth doped fiber amplifiers to space-based systems. We investigate the effects of gamma-radiation-induced photodarkening on the performance of such fibers, both for passive as well as active configurations. With an emphasis on low total ionizing doses, passive irradiations were found to show increased absorption across the visible and IR spectrum. Furthermore, continuous-pumping of an Yb3+ -doped fiber amplifier in a gamma radiation environment was found to exhibit significantly greater degradation than a similar intermittently-pumped irradiated amplifier for low total ionizing doses of under 10 krad(Si) [100 Gy(Si)]. We discuss the implications of the data which provide insight into energy-transfer mechanisms in the fibers and the relationship of gamma-radiation-induced photodarkening and pump-radiation-induced photodarkening associated with the observed fiber degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信