{"title":"基于数据流序列挖掘的用户行为异常检测方法","authors":"Yong Zhou, Yijie Wang, Xingkong Ma","doi":"10.1109/PDCAT.2016.086","DOIUrl":null,"url":null,"abstract":"How to design a low-latency and accurate approach for user behavior anomaly detection over data streams has become a great challenge. However, existing studies cannot meet low-latency and accurate requirements, due to a large number of subsequences and sequential relationship in behaviors. This paper presents BADSM, a user behavior anomaly detection approach based on sequence mining over data streams that seeks to address such challenge. BADSM uses self-adaptive behavior pruning algorithm to adaptively divide data stream into behaviors and decrease the number of subsequences to improve the efficiency of sequence mining. Meanwhile, the top-k abnormal scoring algorithm is used to reduce the complexity of traversal and obtain quantitative detection result to improve accuracy. We design and implement a streaming anomaly detection system based on BADSM to perform online detection. Extensive experiments confirm that BADSM significantly reduces processing delay by at least 36.8% and false positive rate by 6.4% compared with the classic sequence mining approach PrefixSpan.","PeriodicalId":203925,"journal":{"name":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A User Behavior Anomaly Detection Approach Based on Sequence Mining over Data Streams\",\"authors\":\"Yong Zhou, Yijie Wang, Xingkong Ma\",\"doi\":\"10.1109/PDCAT.2016.086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to design a low-latency and accurate approach for user behavior anomaly detection over data streams has become a great challenge. However, existing studies cannot meet low-latency and accurate requirements, due to a large number of subsequences and sequential relationship in behaviors. This paper presents BADSM, a user behavior anomaly detection approach based on sequence mining over data streams that seeks to address such challenge. BADSM uses self-adaptive behavior pruning algorithm to adaptively divide data stream into behaviors and decrease the number of subsequences to improve the efficiency of sequence mining. Meanwhile, the top-k abnormal scoring algorithm is used to reduce the complexity of traversal and obtain quantitative detection result to improve accuracy. We design and implement a streaming anomaly detection system based on BADSM to perform online detection. Extensive experiments confirm that BADSM significantly reduces processing delay by at least 36.8% and false positive rate by 6.4% compared with the classic sequence mining approach PrefixSpan.\",\"PeriodicalId\":203925,\"journal\":{\"name\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2016.086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2016.086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A User Behavior Anomaly Detection Approach Based on Sequence Mining over Data Streams
How to design a low-latency and accurate approach for user behavior anomaly detection over data streams has become a great challenge. However, existing studies cannot meet low-latency and accurate requirements, due to a large number of subsequences and sequential relationship in behaviors. This paper presents BADSM, a user behavior anomaly detection approach based on sequence mining over data streams that seeks to address such challenge. BADSM uses self-adaptive behavior pruning algorithm to adaptively divide data stream into behaviors and decrease the number of subsequences to improve the efficiency of sequence mining. Meanwhile, the top-k abnormal scoring algorithm is used to reduce the complexity of traversal and obtain quantitative detection result to improve accuracy. We design and implement a streaming anomaly detection system based on BADSM to perform online detection. Extensive experiments confirm that BADSM significantly reduces processing delay by at least 36.8% and false positive rate by 6.4% compared with the classic sequence mining approach PrefixSpan.