表征理论速成班

L. Tu
{"title":"表征理论速成班","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.33","DOIUrl":null,"url":null,"abstract":"This chapter studies representation theory. In order to state the equivariant localization formula of Atiyah–Bott and Berline–Vergne, one will need to know some representation theory. Representation theory “represents” the elements of a group by matrices in such a way that group multiplication becomes matrix multiplication. It is a way of simplifying group theory. The chapter provides the minimal representation theory needed for equivariant cohomology. A real representation of a group G is a group homomorphism. Every representation has at least two invariant subspaces, 0 and V. These are called the trivial invariant subspaces. A representation is said to be irreducible if it has no invariant subspaces other than 0 and V; otherwise, it is reducible.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Crash Course in Representation Theory\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter studies representation theory. In order to state the equivariant localization formula of Atiyah–Bott and Berline–Vergne, one will need to know some representation theory. Representation theory “represents” the elements of a group by matrices in such a way that group multiplication becomes matrix multiplication. It is a way of simplifying group theory. The chapter provides the minimal representation theory needed for equivariant cohomology. A real representation of a group G is a group homomorphism. Every representation has at least two invariant subspaces, 0 and V. These are called the trivial invariant subspaces. A representation is said to be irreducible if it has no invariant subspaces other than 0 and V; otherwise, it is reducible.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章研究表征理论。为了陈述Atiyah-Bott和berlin - vergne的等变局部化公式,我们需要了解一些表示理论。表示理论用矩阵“表示”一个群的元素,这样群乘法就变成了矩阵乘法。这是一种简化群论的方法。本章提供了等变上同调所需的最小表示理论。群G的实表示是群同态。每个表示至少有两个不变子空间,0和v,这些被称为平凡不变子空间。如果一个表示除了0和V之外没有不变的子空间,我们说它是不可约的;否则,它是可约的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Crash Course in Representation Theory
This chapter studies representation theory. In order to state the equivariant localization formula of Atiyah–Bott and Berline–Vergne, one will need to know some representation theory. Representation theory “represents” the elements of a group by matrices in such a way that group multiplication becomes matrix multiplication. It is a way of simplifying group theory. The chapter provides the minimal representation theory needed for equivariant cohomology. A real representation of a group G is a group homomorphism. Every representation has at least two invariant subspaces, 0 and V. These are called the trivial invariant subspaces. A representation is said to be irreducible if it has no invariant subspaces other than 0 and V; otherwise, it is reducible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信